

GOVERNO DO ESTADO DE GOIÁS

SECRETARIA DE ESTADO DA INFRAESTRUTURA – SEINFRA
SUBSECRETARIA DE POLÍTICAS PÚBLICAS PARA OBRAS E SANEAMENTO – SUPPOS
SUPERINTENDÊNCIA DE PLANEJAMENTO DE OBRAS PÚBLICAS – SPOP
GERÊNCIA DE PLANEJAMENTO E PROGRAMAÇÃO DE INVESTIMENTOS – GEPPI

PONTE SOBRE O RIBEIRÃO MARIA

(NOVO GAMA E VALPARAÍSO DE GOIÁS)

VOLUME 3B - MEMORIAL DE CÁLCULOS ESTRUTURAIS

ART Nº 1020230298411

SUMÁRIO

1.	SUPE	RESTRUTURA	. 12
	1.1. D	Pados da ponte	. 12
	1.2. D	Pados iniciais	. 12
	1.3. D	Determinação do coeficiente de impacto (φ), segundo a NBR 7187/2021	. 13
	1.3.1.	Coeficiente de impacto vertical (CIV)	. 13
	1.3.2.	Coeficiente de número de faixas (CNF)	. 14
	1.3.3.	Coeficiente de impacto adicional (CIA)	. 14
	1.4. S	olução de cálculo - superestrutura	. 14
	1.4.1.	Determinação dos coeficientes de impacto para o vão central	. 14
	1.4.2.	Determinação dos coeficientes de impacto para os balanços	. 15
	1.4.3.	Altura da laje	. 15
	1.4.4.	Laje do tabuleiro do balanço 1	. 15
	1.4.5.	Laje central do tabuleiro	. 19
	1.4.1.	Laje do tabuleiro do balanço 2	. 21
	1.4.2.	Momentos devidos ao carregamento permanente	. 23
	1.4.3.	Redução do momento positivo da laje central	. 27
	1.5. C	'álculo das armaduras - superestrutura	. 30
	1.5.1.	Para o balanço 1	. 30
	1.5.2.	Para a laje central	. 35
	1.5.3.	Para o balanço 2	. 36
	1.6. A	rmadura de distribuição	. 39
	1.7. C	Cálculo do comprimento de transpasse de barras tracionadas	. 40
	1.7.1.	Para Myr – Barra N04	. 41
	1.7.2.	Para o Mym – Barra N05	. 41

1.7.3. Pa	ra Mym na Laje Central – Barra N07	42
1.7.4. Pa	ara N08 – parte comprimida	42
1.8. Verifi	cação quanto ao esforço cortante	43
1.8.1. Pa	ıra carga móvel	43
1.8.2. Pa	ıra carga permanente	43
1.8.3. Ve	erificação do cortante	44
1.9. Comp	primento de ancoragem	45
1.10. Comp	primento da armadura negativa nos apoios	46
1.11. Arma	dura de distribuição	47
1.12. Cálcu	ılo das vigas principais	47
1.12.1. V	Viga principal 1	47
1.12.2. V	Viga principal 2	51
1.13. Mom	ento da viga principal 1 devido ao carregamento móvel	54
1.14. Carre	gamento permanente V1	56
1.14.1. L	Longarina 1	56
1.14.2. Т	Fransversina	58
1.14.3. E	Elementos de cabeceira	59
1.14.4. C	Cálculo dos momentos para VP1	61
1.15. Arma	dura longitudinal da longarina 1	62
1.15.1. V	/iga em seção T	63
1.15.2. C	Cálculo linha neutra	64
1.15.3. C	Coeficiente de fadiga para os momentos fletores (k)	66
1.15.4. П	Detalhamento da armadura	67
1.16. Verif	icação do cortante	68
1.16.1. C	Cálculo da Área de Aço mínima para o cortante	69
1.16.2. N	Modelo de cálculo 1	69
1.16.3. N	Modelo de Cálculo II com $\theta = 30^{\circ}$	73

1.16.4.	Coeficiente de fadiga para o cortante (k)	77
1.17. Mo	omento na viga principal 2 devido ao carregamento móvel	80
1.18. Ca	rregamento permanente VP2	81
1.18.1.	Transversina	83
1.18.2.	Elementos de cabeceira	84
1.18.1.	Cálculo dos momentos	86
1.19. Ar	madura longitudinal da longarina 2	87
1.19.1.	Viga em seção T	88
1.19.2.	Cálculo linha neutra	89
1.19.3.	Coeficiente de fadiga para os momentos fletores (k)	91
1.19.4.	Detalhamento da armadura	92
1.20. Ve	rificação do cortante	92
1.20.1.	Cálculo da Área de Aço mínima para o cortante	94
1.20.2.	Modelo de cálculo I	94
1.20.3.	Modelo de Cálculo II com $\theta=30^{\circ}$	98
1.20.4.	Coeficiente de fadiga para o cortante (k)	102
1.21. De	calagem e ancoragem	103
1.21.1.	Decalagem	103
1.21.2.	Comprimento de ancoragem	103
1.21.3.	Emendas	105
1.21.4.	Armadura de pele	105
1.22. Cá	lculo da transversina de vão	105
1.23. Cá	lculo da transversina de apoio	108
1.24. Re	ações de apoio devido à carga móvel na longarina	110
2. MESOI	ESTRUTURA	112
2.1. Fre	enagem e aceleração	112
2.1.1.	Ponte descarregada	113

2.1.2	Ponte carregada
2.1.3	Passarela de pedestre
2.2.	Força do vento no sentido longitudinal
2.2.1	. Ponte descarregada
2.2.2	Ponte carregada
2.3.	Cargas na mesoestrutura
2.3.1	. Empuxo de terra
2.3.2	Sobrecarga no aterro de acesso
2.4.	Forças na superestrutura em situação de tráfego
2.4.1	. Longitudinal
2.4.2	Transversal
2.5.	Forças na superestrutura na execução
2.5.1	. Longitudinal
2.5.2	Transversal
2.6.	Cálculo dos aparelhos de apoio
2.7.	Distribuição das forças transversais na mesoestrutura
2.8.	Forças devido as deformações internas
2.9.	Armadura do pilar
3. CÁL	CULO ELEMENTOS DE CABECEIRA
3.1.	Cálculo do encontro
3.1.1	. Carregamento permanente
3.1.2	Carregamento móvel
3.1.3	Fadiga à flexão
3.1.4	Forças cortantes 132
3.2.	Empuxo de terra no encontro
3.2.1	. Para momento no apoio (seção 0)
3.2.2	. Para o momento no centro do vão (secão 1)

	3.3.	Empuxo na cortina lateral	135
	3.3.	1. Área de aço para a seção 1	135
	3.3.	2. Área de aço para a seção 2	135
	3.4.	Laje de transição	136
	3.4.	1. Cálculo dos momentos para carga permanente para laje de transição	137
	3.4.	2. Cálculo dos momentos para carga móvel para laje de transição	137
	3.4.	3. Cálculo área de aço	138
	3.5.	Cálculo da travessa superior	138
	3.6.	Cálculo da Viga de Rigidez	139
4.	. FUI	NDAÇÕES	140
	4.1.	Cálculo das estacas pelo método de Aoki-Velloso	140
	4.2.	Cálculo das estacas pelo método de Decourt-Quaresma	142
	4.3.	Cálculo dos momentos na estaca	145
	4.4.	Cálculo do bloco de fundação	147
	44	1 Dimensionamento do bloco	147

LISTA DE FIGURAS

Figura 1 - Seção longitudinal
Figura 2 - Seção transversal
Figura 3 - Veículo tipo TB-450
Figura 4 - Seção transversal da ponte
Figura 5 – Projeção da roda no eixo médio da laje
Figura 6 – Altura do pavimento
Figura 7 - Esquema de borda da laje
Figura 8 - Esquema de borda laje central
Figura 9 - Altura pavimento na laje central
Figura 10 - Esquema do balanço
Figura 11 - Altura pavimento no balanço 1
Figura 12 - Esquema guarda rodas
Figura 13 - Representação gráfica em trapézio
Figura 14 - Diagrama resultante
Figura 15 - Taxas mínimas de armadura de flexão
Figura 16 - Extensão da armadura negativa nos apoios com continuidade entre lajes 46
Figura 17 - Esquema do veículo tipo para o máximo esforço na Viga 1
Figura 18 - Linha de influência Corte A-A
Figura 19 - Linha de influência Corte B-B
Figura 20 - Carregamento real para VP1
Figura 21 - Carregamento correspondente na VP1
Figura 22 - Esquema do veículo tipo para o máximo esforço na VP2
Figura 23 - Linha de influência Corte A-A
Figura 24 - Cargas pontuais correspondentes à carga pontual
Figura 25 - Carregamento móvel real para VP2
Figura 26 - Carregamento correspondente na VP2
Figura 27 - Carregamento móvel na Longarina 1
Figura 28 - Diagrama de momento fletor na VP1 devido ao carregamento móvel 56
Figura 29 - Diagrama de esforço cortante na VP1 devido ao carregamento móvel 56
Figura 30 - Seção transversal da superestrutura na Longarina 1
Figura 31- Elementos de cabeceira
Figura 32 - Carregamento permanente na Longarina 1

Figura 33 - Diagrama de Momento na VP1 devido ao carregamento permanente	. 62
Figura 34 - Diagrama de Cortante na VP1 devido ao carregamento permanente	. 62
Figura 35 - Esquema para determinar seção T	. 64
Figura 36 – VP1 em seção T	. 64
Figura 37 - Carregamento móvel na Longarina 2	. 80
Figura 38 - Diagrama de momento fletor para carregamento móvel na VP2	. 81
Figura 39 - Diagrama de esforço cortante para carregamento móvel na VP2	. 81
Figura 40 - Seção transversal da superestrutura na Longarina 2	. 81
Figura 41- Elementos de cabeceira	. 84
Figura 42 - Carregamento permanente Longarina 2	. 86
Figura 43 - Diagrama de Momento Fletor na VP2	. 87
Figura 44 - Diagrama de Esforço Cortante na VP2	. 87
Figura 45 - VP2 em seção T	. 89
Figura 46 - Momento máximo negativo na transversina de vão	107
Figura 47 - Momento máximo negativo na transversina de apoio	110
Figura 48 - Linha de Influência para reação de apoio	111
Figura 49 - Centro de gravidade da ponte	120
Figura 50 - Sentido transversal.	122
Figura 51 - Momentos máximos e reações de apoio na transversal	123
Figura 52 - Seção longitudinal	124
Figura 53 - Momentos máximos e reações de apoio na longitudinal	125
Figura 54 - Encontro elemento de cabeceira	127
Figura 55 - Carregamento permanente para os elementos de encontro	128
Figura 56 - Momentos e reações de apoio	128
Figura 57 - Cortante máximo e mínimo	128
Figura 58 - Carregamento móvel para os elementos de encontro	129
Figura 59 - Linha de influência para carregamento móvel	129
Figura 60 - Momentos máximos e mínimos para carregamento móvel no encontro	130
Figura 61 - Cortantes máximos e mínimos para carregamento móvel no encontro	130
Figura 62 - Cortina lateral	135
Figura 63 - Laje de transição	136
Figura 64 - Cálculo da travessa superior	139
Figura 65 - Cálculo da Viga de Rigidez	139

Figura 66 - Carga admissivel estaca	140
Figura 67 - Coeficientes de transformação F1 e F2	142
Figura 68 - Coeficientes de K e α	142
Figura 69 - Valores de K'	144
Figura 70 - Valores do fator em função do tipo de estaca e do tipo de solo	144
Figura 71 - Valores de fator em função do tipo de estaca e do tipo de solo	144
Figura 72 - Carga admissível da estaca com 11 metros	146
Figura 73 - Bloco retangular sobre 6 estacas	147
Figura 74 - Vista superior esquemático dos blocos	148

LISTA DE TABELAS

Tabel	la 1 - Momentos e esforços cortantes devido ao carregamento móvel por seção	na
Longarir	na 1	55
Tabel	la 2 - Momentos e esforços cortantes devido ao carregamento permanente por seção	na
Longarir	na 1	61
Tabel	la 3 - Momentos máximos e mínimos na VP1	63
Tabel	la 4 - Resumo área de aço e quantitativo de barras na VP1	66
Tabel	la 5 - Coeficiente de fadiga (k) e Área de aço da fadiga para momentos na VP1	67
Tabel	la 6 - Esforço cortante máximo e mínimo na VP1	68
Tabel	la 7 – Verificação esforço cortante para o Modelo 1 na VP1	70
Tabel	la 8 - Área de aço para o cortante máximo na VP1 para o Modelo de Cálculo I	72
Tabel	la 9 - Área de aço para cortante mínimo na VP1 para o Modelo de Cálculo I	72
Tabel	la 10 - Verificação esforço cortante para o Modelo de Cálculo II na VP1	74
Tabel	la 11 - Área de aço para o cortante máximo na VP1 para o Modelo de Cálculo II	76
Tabel	la 12 - Área de aço para o cortante mínimo na VP1 para o Modelo de Cálculo II	76
Tabel	la 13 - Resumo da área de aço final considerando a fadiga na VP1	78
Tabel	la 14 - Momentos e esforços cortantes devido ao carregamento móvel na VP2	80
Tabel	la 15 - Momentos e cortantes devido ao carregamento permanente na VP2	86
Tabel	la 16 - Momentos máximos e mínimos na VP2	88
Tabel	la 17 - Resumo área de aço e quantitativo de barras na VP2	90
Tabel	la 18 – Área de aço final considerando a fadiga na VP2	91
Tabel	la 19 - Verificação esforço cortante para o Modelo 1 na VP1	94
Tabel	la 20 - Área de aço para o cortante máximo na VP2 para o Modelo de Cálculo I	96
Tabel	la 21 - Área de aço para cortante mínimo na VP2 para o Modelo de Cálculo I	97
Tabel	la 22 - Verificação esforço cortante para o Modelo de Cálculo II na VP2	98
Tabel	la 23 - Área de aço para o cortante máximo na VP2 para o Modelo de Cálculo II 1	00
Tabel	la 24 - Área de aço para o cortante mínimo na VP2 para o Modelo de Cálculo II 1	01
Tabel	la 25 - Resumo da área de aço final considerando a fadiga na VP2 1	02
Tabel	la 26 - Reações de apoio1	12
Tabel	la 27 - Resumo reações de apoio máximos e mínimos 1	12
Tabel	la 28 - Resultado das forças na longitudinal	19
Tabel	la 29 - Resultado das forças internas devido a variação de temperatura 1	21
Tabel	la 30 - Esforços finais nos pilares	22

Tabela 31 - Área de aço calculada e coeficiente de fadiga	132
Tabela 32 - Área de aço considerando fadiga	132

1. SUPERESTRUTURA

1.1. Dados da ponte

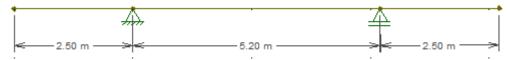

Ponte em concreto armado com 30 metros de extensão, sendo 20m de vão livre e 5m em balanço em cada uma das extremidades, exemplificado na Figura 1.

Figura 1 - Seção longitudinal

A seção transversal da ponte que consiste em uma pista simples com duas faixas e uma passarela para pedestres com 1,20m de extensão, com o esquema estático representado na Figura 2.

Figura 2 - Seção transversal

1.2. Dados iniciais

Inicialmente, é necessário a determinação de alguns dados básicos para a solução do projeto. Dessa forma, indica-se a utilização do Aço CA-50 e, como há usinas de concreto na região, será definido um valor de fck para o concreto de 35 MPA.

Além disso, seguindo a normativa (NBR 7188, 2013), tem-se que a carga móvel é defina por um veículo tipo com seis rodas, TB-450, e uma carga de pedestre, com as seguintes especificações:

- Carga total = 450 kN
- Carga por roda = 75 kN
- Carga de multidão = 5kN/m²
- Área de ocupação: 18 m²
- Carga de pedestre = 3 kN/m²

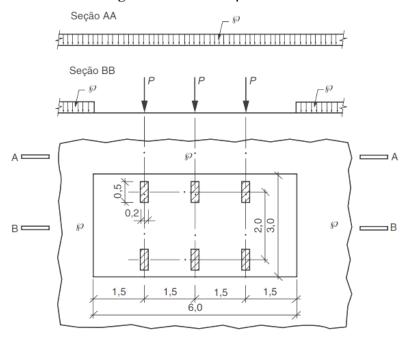


Figura 3 - Veículo tipo TB-450

Fonte: NBR 7188 (2013).

1.3. Determinação do coeficiente de impacto (φ), segundo a NBR 7187/2021.

$$\varphi = CIV * CNF * CIA \tag{1}$$

Sendo:

CIV – coeficiente de impacto vertical;

CNF – coeficiente de número de faixas;

CIA – coeficiente de impacto adicional.

1.3.1. Coeficiente de impacto vertical (CIV)

O coeficiente de impacto vertical é a majoração das cargas móveis verticais definidas anteriormente, sendo determinado por:

Vãos menores que 10 metros, têm-se que o CIV igual à 1,35;

Vãos maiores que 10 m, têm-se que:

$$CIV = 1 + 1,06 \left(\frac{20}{LIV + 50}\right) \tag{2}$$

Sendo LIV:

- Igual ao comprimento do vão, para estruturas isostáticas;
- Média aritmética, para vãos contínuos;
- Comprimento do balanço, para estruturas em balanço.

1.3.2. Coeficiente de número de faixas (CNF)

As cargas móveis definidas anteriormente devem ser ajustadas pelo coeficiente de número de faixas, conforme equação abaixo.

$$CNF = 1 - 0.005(N - 2) > 0.9 \tag{3}$$

Sendo N o número de faixas de tráfego rodoviário.

1.3.3. Coeficiente de impacto adicional (CIA)

Os esforços das cargas móveis devem ser majorados na região das juntas estruturais e nas extremidades da edificação pelo coeficiente de impacto adicional, definido abaixo:

- Para obras em concreto ou mistas, o CIA é igual a 1,25;
- Para obras em aço, o CIA é igual a 1,15.

1.4. Solução de cálculo - superestrutura

1.4.1. Determinação dos coeficientes de impacto para o vão central

Diante disso, por se tratar de uma obra em concreto, tem-se que o CIA será de 1,25. Além disso, como os vãos são inferiores à 10 metros, como analisado na Figura 4, o CIV considerado é de 1,35.

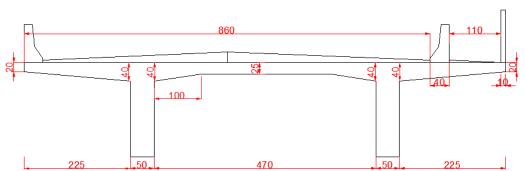


Figura 4 - Seção transversal da ponte

Sabendo que são 2 faixas de tráfego, tem-se que o CNF é:

$$CNF = 1 - 0.005(2 - 2) > 0.9$$

 $CNF = 1$

Dessa forma, o coeficiente de impacto para o vão central será:

$$\varphi = 1,35 * 1 * 1,25$$

$$\varphi = 1,688$$

1.4.2. Determinação dos coeficientes de impacto para os balanços

Assim como para o vão central, tem-se que:

- CIV igual a 1,35;
- CNF igual a 1;
- CIA igual a 1,25.

Portanto, o coeficiente de impacto para o balanço é:

$$\varphi = 1,35 * 1 * 1,25$$

$$\varphi = 1,688$$

1.4.3. Altura da laje

Segundo a NBR 7187/2021, as alturas mínimas (h) para lajes maciças variam de acordo com a funcionalidade:

- Para passagem de tráfego ferroviário: h ≥ 23 cm;
- Para passagem de tráfego rodoviário, exceto lajes de continuidade: $h \ge 18$ cm
- Demais casos: $h \ge 12$ cm

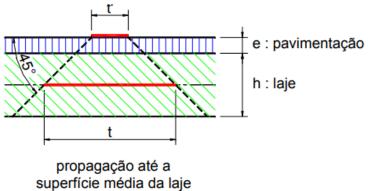
Será adotado uma laje maciça de 25 cm de espessura para a laje central e altura variável de 20 cm à 40 cm para as lajes em balanço.

1.4.4. Laje do tabuleiro do balanço 1

Para o cálculo dos momentos, utiliza-se a Tabela de Rüsch. Para lajes em balanço de Classe 45 tf tem-se as seguintes definições:

- Comprimento do vão em balanço 1 (lx) = 2,1 m;
- Distância entre centros das rodas de cada eixo do veículo tipo (a) = 2 m;
- Dimensão do retângulo de contato da roda (b)
- Projeção da roda no eixo médio da laje (t):

$$t = t' + 2e + h \tag{4}$$

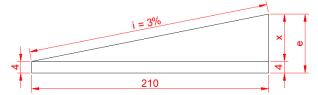

Sendo:

t' – quadrado de área equivalente a b. Dessa forma, $t' = \sqrt{0.20 * b}$

e – espessura do pavimento;

h – altura da laje.

Figura 5 – Projeção da roda no eixo médio da laje



Com isso, tem-se que:

$$b = 50 \times 20 = 1000 \text{ cm}$$

 $t' = 31,62 \text{ cm}$

Além disso, faz-se necessário a determinação da altura média do pavimento e da laje maciça, seguindo o esquema abaixo.

Figura 6 – Altura do pavimento

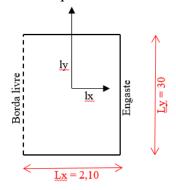
Por semelhança de triângulos, consegue-se definir o valor de x.

$$\frac{3}{100} = \frac{x}{210}$$

$$x = 6.3 \text{ cm}$$

Como o pavimento é inclinado, utiliza-se como base de cálculo a média da espessura do pavimento e da altura da laje. Diante disso, tem-se que a espessura média do pavimento $(e_{m\acute{e}d})$ e a altura média da laje $(h_{m\acute{e}d})$ é de:

$$em\acute{e}d=\frac{4+10,3}{2}$$


$$em\acute{e}d = 7,15 cm$$

$$hm\acute{e}d = \frac{20 + 35}{2}$$

$$hm\acute{e}d = 27,5 cm$$

Dessa forma, analisando o esquema de bordas da laje na Figura 7, pode-se determinar a projeção da roda no eixo médio da laje (t) por meio da Equação 4.

Figura 7 - Esquema de borda da laje

$$t = 31,62 + 2 * 7,15 + 27,5$$

 $t = 73,42 \text{ cm}$

Com isso, determina-se os parâmetros de entrada das tabelas de Rüsch por meio das Equações.

$$\frac{lx}{a} = \frac{2,10}{2} = 1,05\tag{5}$$

$$\frac{t}{a} = \frac{0,7342}{2} = 0,3671\tag{6}$$

1.4.4.1. Cálculo dos momentos para carga móvel para a laje do balanço 1

Para o cálculo dos momentos na laje é necessário fazer a interpolação dos dados da Tabela de Rüsch Nr. 98.

Com isso, pode-se calcular os momentos com a Equação:

$$M = \phi * (P * M1 + p * Mp + p' * Mp')$$
(7)

Sendo,

P: carga por roda;

p e p': carga de multidão.

Com isso, tem-se que o Mxm^+ é:

$$Mxm^+ = 1,688 * (75 * 0,0769 + 5 * 0 + 5 * 0,012)$$

 $Mxm^+ = 9.83 \ kNm/m$

Em sequência, calcula-se o Mym⁺por meio de:

$$Mym^+ = 1,688 * (75 * 0,1112 + 5 * 0 + 5 * 0,004)$$

 $Mym^+ = 14,11 kNm/m$

Já o momento Mxe^- é:

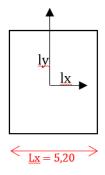
$$Mxe^{-} = -1,688 * (75 * 1,1804 + 5 * 0,086 + 5 * 0)$$

 $Mxe^{-} = -150,12 \, kNm/m$

Para o Myr tem-se que:

$$Myr = 1,688 * (75 * 0,3121 + 5 * 0 + 5 * 0)$$

$$Myr = 39,50 \text{ kNm/m}$$


Por fim, tem-se que o Mxm^- é:

$$Mxm^{-} = 1,688 * (75 * 0,3070 + 5 * 0,09 + 5 * 0)$$

 $Mxm^{-} = -39,61 \text{ kNm/m}$

1.4.5. Laje central do tabuleiro

Analisando o esquema de bordas da laje na Figura 8, pode-se determinar a projeção da roda no eixo médio da laje (t) por meio da Equação 4.

Figura 8 - Esquema de borda laje central

Além disso, determina-se a altura média do pavimento e da laje central, como pode ser analisado pelo esquema abaixo.

16,3 10,3 hmed1 hmed2 x 4

Figura 9 - Altura pavimento na laje central

Dessa forma, tem-se que:

$$\frac{3}{100} = \frac{x}{0.9}$$

$$x = 2.7 \text{ cm}$$

Com isso, determina-se que a altura total do ponto é de 6,7 cm.

Já a altura média do pavimento, é determinada por:

$$emed = emed1 + emed2$$
 $emed1 = \frac{10,3 + 16,3}{2} = 13,30$
 $emed2 = \frac{6,7 + 16,3}{2} = 11,50$
 $5,2emed = 2 * 13,30 + 3,2 * 11,50$
 $emed = 12,19 cm$

Desse modo, calcula-se a projeção da roda no eixo médio da laje (t):

$$t = 31,62 + 2 * 12,19 + 25$$

 $t = 81 cm$

Com isso, determina-se os parâmetros de entrada das tabelas de Rusch por meio das equações abaixo:

$$\frac{lx}{a} = \frac{5,20}{2} = 2,60$$

$$\frac{t}{a} = \frac{0.81}{2} = 0.405$$

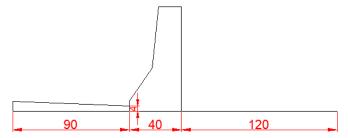
1.4.5.1. Cálculo dos momentos para carga móvel para laje central

Para o cálculo do dos momentos na laje central é necessário fazer a interpolação dos dados da Tabela de Rüsch Nr. 1.

Utilizando a Equação 7, apresentada anteriormente, calcula-se o Mxm^+ :

$$Mxm^+ = 1,688 * (75 * 0,593 + 5 * 0,664 + 5 * 1,038)$$

 $Mxm^+ = 89,41 \, kNm/m$


Para o Mym tem-se:

$$Mym = 1,688 * (75 * 0,322 + 5 * 0,114 + 5 * 0,272)$$

 $Mym = 44,01 \, kNm/m$

1.4.1. Laje do tabuleiro do balanço 2

Analisando o esquema de balanço abaixo, pode-se determinar os parâmetros de entrada das tabelas de Rüsch.

Figura 10 - Esquema do balanço

Diante disso, tem-se que a espessura média do pavimento é:

$$em\acute{e}d = \frac{6,7+4}{2} = 5,35 \ cm$$

Fazendo a altura média da laje tem-se:

$$hm\acute{e}d = \frac{20 + 40}{2} = 30 \ cm$$

Com isso, calcula-se a projeção da roda no eixo médio da laje (t):

$$t = 31,62 + 2 * 5,35 + 30$$

 $t = 72,32 cm$

Com isso, determina-se os parâmetros de entrada das tabelas de Rusch por meio das equações abaixo:

$$\frac{lx}{a} = \frac{2,50}{2} = 1,25$$

$$\frac{t}{a} = \frac{0,7232}{2} = 0,3616$$

1.4.1.1. Cálculo dos momentos para carga móvel para o balanço 2

Para o cálculo do dos momentos devido a carga móvel no balanço é necessário fazer a interpolação dos dados da Tabela de Rüsch Nr. 98.

Utilizando a Equação 7, apresentada anteriormente, calcula-se o Mxm^+ :

$$Mxm^+ = 1,688 * (75 * 0,092 + 5 * 0 + 5 * 0,02)$$

 $Mxm^+ = 11,81 \ kNm/m$

Para o Mym, tem-se:

$$Mym = 1,688 * (75 * 0,132 + 5 * 0 + 5 * 0,02)$$

 $Mym = 16,88 \, kNm/m$

Para o Mxe tem-se:

$$Mxe = -1,688 * (75 * 1,40 + 5 * 0,230 + 5 * 0)$$

 $Mxe = -179,13 \text{ kNm/m}$

Para o Myr tem-se:

$$Myr = 1,688 * (75 * 0,392 + 5 * 0 + 5 * 0)$$

 $Myr = 49,61 \, kNm/m$

Por fim, para o Mxm^- tem-se:

$$Mxm^{-} = -1,688 * (75 * 0,349 + 5 * 0,21 + 5 * 0)$$

 $Mxm^{-} = -45,94 \text{ kNm/m}$

1.4.2. Momentos devidos ao carregamento permanente

1.4.2.1. Cálculo dos momentos devido ao carregamento permanente para a laje em balanço 1

O cálculo dos momentos devidos ao carregamento permanente é calculado por meio da Equação.

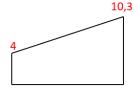
$$M = k * g1 * lx1^{2} + k * g2 * lx2^{2} + P * lx3$$
 (8)

Onde,

• g1 é o peso próprio da laje, calculado por meio da Equação.

$$g1 = Yc * h \tag{9}$$

Sendo $\chi c = 25 \, kN/m^3$.


• g2 é o carregamento devido a pavimentação e recapeamento (2 kN/m²), calculado por meio da Equação.

$$g2 = \mathbb{Y}pav * hpav + 2 \tag{10}$$

Sendo $\forall pav = 24 \ kN/m^3$

Diante disso, calcula-se a altura média do pavimento (hméd) para com isso determinar o valor de g2.

Figura 11 - Altura pavimento no balanço 1

$$h = \frac{4 + 10,30}{2} = 7,15 \ cm$$

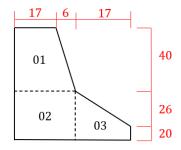
Com isso, tem-se que o g2 é:

$$g2 = gpav = 0.0715 * 24 + 2$$

 $gpav = 3.71 kN/m^2$

Posteriormente, faz-se o cálculo do peso próprio, onde é necessário a estimativa da altura média (h).

$$hmed = \frac{20 + 40}{2}$$


$$hmed = 30 cm$$

Com isso, acha-se o gpp, por meio da equação abaixo:

$$gpp = 0.30 * 25 = 7.5 \, kN/m^2$$

Por fim, faz-se o cálculo para o guarda rodas de acordo com a Figura 12.

Figura 12 - Esquema guarda rodas

$$Agr = \frac{(17+23)*40}{2} + 23*36 + \frac{(20+46)*17}{2}$$
$$Agr = 0.2419 \, m^2$$

Com isso, tem-se que:

$$Pgr = 25 * 0.2419 = 6.05 \, kN/m$$

Dessa forma, pode-se calcular os momentos por meio da Equação 8

$$Mxe^{g} = -\left(\frac{7.5 * 2.5^{2}}{2} + \frac{3.71 * 2.1^{2}}{2} + 6.05 * 2.3\right)$$

$$Mxe^{g} = -(23.44 + 8.18 + 13.91)$$

$$Mxe^{g} = -45.53 \ kNm/m$$

$$Mxm^{-} = Mxm^{+} = -\left[\left(\frac{7.5 * (2.5 - 1.05)^{2}}{2}\right) + \left(\frac{3.71 * 1.05^{2}}{2}\right) + (6.05 * (2.3 - 1.05))\right]$$

$$Mxm^{-} = -17.49 \ kNm/m$$

Sendo que Myr, Mym são valores nulos.

1.4.2.2. Cálculo dos momentos devido ao carregamento permanente para a laje central

Sabendo-se que a altura média da pavimentação é de 12,19 cm, dessa forma, utilizando a Equação 10, tem-se que o gpav é:

$$gpav = 0.1219 * 24 + 2 = 4.92 \, kN/m^2$$

Já para o peso próprio, tem-se uma altura média da laje é:

$$520hm\acute{e}d = 100 * 15 + 25 * 520$$

 $hm\acute{e}d = 27,88 cm$

Dessa forma, o peso próprio da laje é:

$$gpp = 0.2788 * 25 = 6.97 \ kN/m^2$$

Com isso, utilizando a tabela de Rüsch Nr.1, tem-se que k é 0,125 para o Mxm e 0,0208 para o Mym, onde.

$$M = k * a * lx^2$$

Dessa forma, para o Mxm, tem-se:

$$Mxm^g = 0.125 * (4.92 + 6.97) * 5.2^2$$

 $Mxm^g = 40.19 \ kNm/m$

Para o Mym tem-se:

$$Mym^g = 0.0208 * (4.92 + 6.97) * 5.2^2$$

 $Mym^g = 6.69 kNm/m$

1.4.2.3. Cálculo dos momentos devido ao carregamento permanente para a laje em balanço 2

Sabendo que a altura média do pavimento é de 5,35 cm, tem-se que o gpav é:

$$gpav = 0.0535 * 24 + 2 = 3.28 \, kN/m^2$$

Para o peso próprio, tem-se uma altura média de laje para o balanço 2 é:

$$hm\acute{e}d=\frac{20+40}{2}$$

$$hm\acute{e}d = 30 cm$$

Dessa forma, o peso próprio da laje em balanço é:

$$qpp = 0.30 * 25 = 7.5 \, kN/m^2$$

Já para o guarda rodas, tem-se uma Pgr de 6,05 kN/m.

Para a carga de pavimento na faixa de pedestre, tem-se como altura média:

$$hm\acute{e}d = \frac{5,8+4}{2} = 4,9 \ cm$$

Com isso, tem-se que gped é:

$$gped = 0.049 * 24 + 2 = 3.17 \ kN/m^2$$

Para o guarda corpo, adota-se uma carga de 1 kN/m. Com isso tem-se que os momentos Myr, Mym e Mxm são valores nulos e os momentos Mxe e Mxm^- são de:

$$Mxe = -\left(\frac{7.5 * 2.5^{2}}{2}\right) + \left(\frac{3.28 * 0.9^{2}}{2}\right) + (6.05 * 1.1) + \left(\frac{3.17 * 1.2 * 1.9}{2}\right) + 1 * 2.5$$

$$Mxe = -37.53 \ kNm/m$$

$$Mxm^{-} = -\left(\frac{7,5 * (2,5 - 0,45)^{2}}{2}\right) - \left(\frac{3,28 * (0,45)^{2}}{2}\right) - \left(6,05 * (0,45 + 0,2)\right)$$
$$-\left(\frac{3,17 * 1,2 * (0,45 + 0,4 + 0,6)}{2}\right) - 1 * (1,2 + 0,4 + 0,45)$$
$$Mxm^{-} = -24,83 \ kNm/m$$

1.4.3. Redução do momento positivo da laje central

Faz-se a redução no momento positivo, a fim de diminuir a quantidade de armadura da laje central, por meio do processo simplificado da antiga NB-2, utilizando da Equação.

$$\frac{1}{2}Mxm^0 \le Mb \le \frac{2}{3}Mxm^0 \tag{11}$$

Onde, Mxm⁰ é:

$$Mxm^{0} = Mxm(m\'ovel) + Mxm(permanente)$$
 (12)

Diante disso, tem-se que Mxm^0 é:

$$Mxm^0 = 89.01 + 40.19$$

$$Mxm^0 = 129,20 \ kNm/m$$

Então, tem-se que o Mb é:

$$\frac{1}{2} * 129,20 \le Mb \le \frac{2}{3} * 129,20$$

$$64,60 \le Mb \le 86,13$$

Com isso, é necessário adotar-se um valor para Mb que reduza a quantidade de armadura, mas que, concomitantemente, seja a favor da segurança. Dessa forma, será adotado um valor para Mb de 65 kNm/m.

Diante disso, faz-se uma analogia do gráfico de momento com um trapézio para simplificação de cálculo, conforme Figura 13.

Trecho 1

0,6Mb

Mb

129,20

129,20

Trecho 2

Figura 13 - Representação gráfica em trapézio

Analisando a Figura 13, tem-se a visualização de dois trechos. Para cada uma dessas regiões faz-se o cálculo de momento de uma forma diferente.

Para o Trecho 1, tem-se que

$$M^0 < Mb$$

$$M = M^0 - Mb \tag{13}$$

Para o Trecho 2, tem-se:

$$M^0 > 0.6Mb$$

$$M = M^0 - 0.6Mb \tag{14}$$

Dessa forma, faz-se o diagrama resultante dessa redução, como mostrado na Figura 14.

Figura 14 - Diagrama resultante

Com isso, tem-se o valor dos momentos em cada um dos pontos.

• Ponto 1 – Trecho 1

$$M1 = 0 - 65 = -65 \, kNm/m$$

Ponto 2 – Trecho 1

$$M2 = 39 - 65 = -26 \, kNm/m$$

• Ponto 2 – Trecho 2

$$M2 = 39 - 39 = 0 \, kNm/m$$

Ponto 3 – Trecho 1

$$M3 = 65 - 65 = 0 \, kNm/m$$

• Ponto 3 – Trecho 2

$$M3 = 65 - 39 = 26 \, kNm/m$$

• Ponto 4 – Trecho2

$$M4 = 129,20 - 39 = 90,20 \, kNm/m$$

Dessa forma, faz-se necessário encontrar as distâncias em que ocorre essa mudança de trecho, utilizando como valor de referência o tamanho da mísula (100 cm).

$$\frac{x1}{100} = \frac{65}{129,20}$$

$$x1 = 50,31 cm$$

$$\frac{x2}{100} = \frac{39}{129,20}$$

$$x2 = 30,19 cm$$

1.5. Cálculo das armaduras - superestrutura

1.5.1. Para o balanço 1

Tem-se como dados de momento:

- $Mxe^g = -45.53 \, kNm/m$
- $Mxe^q = -150,12 \, kNm/m$

Com isso, calcula-se o esforço solicitante de cálculo (Sd), que possui as seguintes Equações.

$$Sd = 1.4Sg + 1.4Sq$$

$$Sd = 0.9Sg + 1.4Sq$$

O esforço solicitado a ser considerado é sempre o de maior valor. Com isso, tem-se que:

$$Sd1 = 1,4 * (-45,53) + 1,4 * (-150,12)$$

 $Sd1 = -273,91 \, kNm/m$
 $Sd2 = 0,9 * (-45,53) + 1,4 * (-150,12)$
 $Sd2 = -251,15 \, kNm/m$

Além disso, acha-se a altura útil da laje (d), que consiste na distância da borda comprimida ao centro de gravidade da armadura de tração. Portanto, tem-se que d é:

$$d = 40 - 3.5$$

$$d = 36,50 cm$$

Dessa forma, o esforço solicitante considerado é de -273,91 kNm/m. Com isso, temse que a Área de Aço para o balanço 1 é de:

$$As = \frac{Md}{Fyd * 0,85d}$$

$$As = \frac{273,91 * 10^4}{\left[\left(\frac{500 * 10^3}{1,15} * 0,85 * 0,365 \right) \right]}$$

$$As = 20,31 \, cm^2/m$$

Portanto, utilizando um diâmetro de 20 mm para as barras, tem-se que serão necessárias 7 barras/m.

Para os momentos Mxm⁻ abaixo, tem-se que o esforço solicitante (Sd) é de:

- $Mxm^{-g} = -17.49 \ kNm/m$
- $Mxm^{-q} = -39,61 \, kNm/m$

$$Sd1 = 1,4 * (-17,49) + 1,4 * (-39,61)$$

$$Sd1 = -79,95 \ kNm/m$$

$$Sd2 = 0,9 * (-17,49) + 1,4 * (-39,61)$$

$$Sd2 = -71,20 \ kNm/m$$

Porém, como o Mxm^- é no meio do vão, tem-se que adotar uma altura média.

$$h = \left(\frac{20 + 40}{2}\right) = 30 \ cm$$

Fazendo a altura útil (d), tem-se que:

$$d = h - d'$$

$$d = 30 - 3.5 = 26.5 cm$$

Dessa forma, tem-se que uma área de aço (As), para esse esforço, é de:

$$As = \frac{Md}{Fyd * 0.85d}$$

$$As = \frac{79,95 * 10^4}{\left[\left(\frac{500 * 10^3}{1,15} * 0.85 * 0.265 \right) \right]}$$

$$As = 8.16 cm^2/m$$

Portanto, utilizando um diâmetro de 16 mm para as barras, tem-se que serão necessárias 5 barras/m.

Para os momentos Mxm^+ abaixo, tem-se que o esforço solicitante (Sd) é de:

- $Mxm^g = -17,49 \ kNm/m$
- $Mxm^q = 9.83 \ kNm/m$

$$Sd1 = 1,4 * (-17,49) + 1,4 * (9,83)$$

$$Sd1 = -10,72 \ kNm/m$$

$$Sd2 = 0,9 * (-17,49) + 1,4 * (9,83)$$

$$Sd2 = -1,97 \ kNm/m$$

Dessa forma, adota-se o esforço solicitante de -1,97 kNm/m. Uma vez que o Mxm^+ deu um valor negativo e Mxm^- maior, calcula-se apenas a área de aço mínima em Mxm^+ .

Fazendo a altura útil (d), tem-se que:

$$d = \left(\frac{20+40}{2}\right) - 3.5 = 26.5 \ cm$$

De acordo com a NBR 6118/2022, tem-se que a $As_{m\acute{i}n}$ é calculado por meio da seguinte equação:

$$Asmin = \rho min * bw * h$$

Onde $\rho min(\%)$ é 0,164 para lajes armadas em apenas 1 direção e com fck de 35 MPA., conforme normativa mostrada na figura abaixo.

Figura 15 - Taxas mínimas de armadura de flexão

Forma	Valores de ρ _{min} ^(a) (%)														
da seção	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
Retan- gular	0,150	0,150	0,150	0,164	0,179	0,194	0,208	0,211	0,219	0,226	0,233	0,239	0,245	0,251	0,256
(a) Os va Caso esse		-					93. 5.3		so de a	ço CA	-50, d/l	1 = 0,8,	$\gamma_c = 1$	4 e γ _s =	= 1,15.
$\rho_{\min} = A_s$	mín/Ac														

Fonte: ABNT NBR 6118 (2014).

Dessa forma, a Asmín é:

$$\rho m in = \frac{As}{bw*h}$$

$$\frac{0,164}{100} = \frac{As}{100 * h}$$

$$Asmin = 0.164h$$

$$Asmin = 0,164 * \left(\frac{20 + 40}{2}\right)$$

$$Asmin = 4.92 cm^2/m$$

Portanto, utilizando um diâmetro de 16 mm para as barras, tem-se que serão necessárias 3 barras/m.

Para os momentos Myr abaixo, tem-se que o esforço solicitante (Sd) é de:

- $Myr^g = 0$
- $Myr^q = 39,50 \, kNm/m$

Com isso, tem-se que Sd1 e Sd2 são iguais e de valor:

$$Sd = 1.4 * 39.50$$

$$Sd = 55,30 \, kNm/m$$

Fazendo a altura útil (d), tem-se que:

$$d = 20 - 5 = 15 cm$$

Dessa forma, tem-se que uma área de aço (As), para esse esforço, é de:

$$As = \frac{55,30 * 10^4}{\left[\left(\frac{500 * 10^3}{1,15} * 0,85 * 0,15 \right) \right]} = 9,98 \ cm^2/m$$

Portanto, utilizando um diâmetro de 16 mm para as barras, tem-se que serão necessárias 5 barras/m.

E por fim, para os momentos Mym, tem-se que o esforço solicitante (Sd) é de:

- $Mvm^g = 0$
- $Mym^q = 14,11 \, kNm/m$

Com isso, tem-se que Sd1 e Sd2 são iguais e de valor:

$$Sd = 1.4 * 14.11$$

$$Sd = 19,75 \, kNm/m$$

Fazendo a altura útil (d), tem-se que:

$$d = \left(\frac{20 + 40}{2}\right) - 5 = 25 \ cm$$

Dessa forma, tem-se que uma área de aço (As), para esse esforço, é de:

$$As = \frac{19,66 * 10^4}{\left[\left(\frac{500 * 10^3}{1,15} * 0,85 * 0,25 \right) \right]} = 2,14cm^2/m$$

Entretanto, a área calculada é menor que a área de aço mínima. Dessa forma, tem-se que a área de aço será de:

$$Asmin = 0.164 * 30 = 4.92 cm^2/m$$

Portanto, utilizando um diâmetro de 16 mm para as barras, tem-se que serão necessárias 3 barras/m.

1.5.2. Para a laje central

Para o momento Mxm^+ abaixo, tem-se que a altura útil (d) é de:

•
$$Mxm^+ = M4 = 129,20 - 39 = 90,20 \ kNm/m$$

$$d = 25 - 3.5 = 21.5 cm$$

Dessa forma, tem-se que a Área de Aço (As) é de:

$$As = \frac{1.4 * 90.2 * 10^4}{\left[\left(\frac{500 * 10^3}{1.15} * 0.85 * 0.215 \right) \right]} = 15.89 \ cm^2/m$$

Portanto, utilizando um diâmetro de 16 mm para as barras, tem-se que serão necessárias 8 barras/m.

Para o momento Mym abaixo, tem-se que a altura útil (d) é de:

$$Mym = Mym^g + Mym^q = 50,50 \ kNm/m$$

$$d = 25 - 5 = 20 cm$$

Portanto, tem-se que a Área de Aço (As) é de:

$$As = \frac{1,4 * 50,50 * 10^4}{\left[\left(\frac{500 * 10^3}{1,15} * 0,85 * 0,20\right)\right]} = 9,57 \ cm^2/m$$

Portanto, utilizando um diâmetro de 16 mm para as barras, tem-se que serão necessárias 5 barras/m.

1.5.3. Para o balanço 2

Para os momentos Mxe abaixo, tem-se que o esforço solicitante (Sd) é de:

- $Mxe^g = -37,53 \, kNm/m$
- $Mxe^q = -179.13 \, kNm/m$

$$Sd1 = 1,4 * (-37,53) + 1,4 * (-179,13)$$

 $Sd1 = -303,32 \ kNm/m$

$$Sd2 = 0.9 * (-37,53) + 1.4 * (-179,13)$$

 $Sd2 = -284,56 \text{ kNm/m}$

Com isso, o esforço solicitante adotado é de 303,32 kNm/m. Fazendo a altura útil (d), tem-se que:

$$d = 40 - 3.5 = 36.5 cm$$

Dessa forma, tem-se que a Área de Aço (As) é de:

$$As = \frac{303,32 * 10^4}{\left[\left(\frac{500 * 10^3}{1,15} * 0,85 * 0,365 \right) \right]} = 22,49 \text{ cm}^2/m$$

Portanto, utilizando um diâmetro de 20 mm para as barras, tem-se que serão necessárias 8 barras/m.

Para os momentos Myr abaixo, tem-se que o esforço solicitante (Sd) é de:

- $Myr^g = 0$
- $Myr^q = 49,61 \, kNm/m$

$$Sd = 1.4 * 49.61 = 69.45$$

Fazendo a altura útil (d), tem-se que:

$$d = 20 - 5 = 15 cm$$

Dessa forma, tem-se que a Área de Aço (As) é de:

$$As = \frac{69,45 * 10^4}{\left[\left(\frac{500 * 10^3}{1,15} * 0,85 * 0,15 \right) \right]} = 12,53 \ cm^2/m$$

Portanto, utilizando um diâmetro de 16 mm para as barras, tem-se que serão necessárias 7 barras/m.

Para os momentos Mxm^+ abaixo, tem-se que o esforço solicitante (Sd) é de:

- $Mxm^g = -24,83 \ kNm/m$
- $Mxm^q = 11,81 \, kNm/m$

$$Sd1 = 1,4 * (-24,83) + 1,4 * 11,81$$

 $Sd1 = -18,22 \text{ kNm/m}$

$$Sd2 = 0.9 * (-24.83) + 1.4 * 11.81$$

 $Sd2 = -5.81 \text{ kNm/m}$

Dessa forma, adota-se o esforço solicitante de -18,22 kNm/m. Uma vez que o Mxm^+ deu um valor negativo e Mxm^- maior, calcula-se apenas a área de aço mínima em Mxm^+ .

Fazendo a altura útil (d), tem-se que:

$$d = \left(\frac{20 + 40}{2}\right) - 3.5 = 26.5 \ cm$$

Com isso, tem-se que a Área de Aço Mínima (As_{mín}) é de:

$$Asmin = 0.15h$$

$$Asmin = 0.164 * \left(\frac{20 + 40}{2}\right)$$

$$Asmin = 4,92 cm^2/m$$

Portanto, utilizando um diâmetro de 16 mm para as barras, tem-se que serão necessárias 3 barras/m.

Para os momentos Mym abaixo, tem-se que o esforço solicitante (Sd) é de:

- $M\gamma m^g = 0$
- $Mym^q = 16,88 \, kNm/m$

$$Sd = 1.4 * 16.88$$

$$Sd = 23,63 \, kNm/m$$

Fazendo a altura útil (d), tem-se que:

$$d = \left(\frac{20 + 40}{2}\right) - 5 = 25 \ cm$$

Dessa forma, tem-se que a Área de Aço (As) é de:

$$As = \frac{23,63 * 10^4}{\left[\left(\frac{500 * 10^3}{1,15} * 0,85 * 0,25 \right) \right]} = 2,56 \text{ cm}^2/m$$

Entretanto, a área calculada é menor que a área de aço mínima. Dessa forma, tem-se que a área de aço será de:

$$Asmin = 0.164 * 30$$

$$Asmin = 4,92 cm^2/m$$

Portanto, utilizando um diâmetro de 16 mm para as barras, tem-se que serão necessárias 3 barras/m.

Para os momentos Mxm⁻ abaixo, tem-se que o esforço solicitante (Sd) é de:

- $Mxm^{-g} = -24.83 \ kNm/m$
- $Mxm^{-q} = -45.94 \, kNm/m$

$$Sd1 = 1,4 * (-24,83) + 1,4 * (-45,94)$$

$$Sd1 = -99,08 \, kNm/m$$

$$Sd2 = 0,9 * (-23,83) + 1,4 * (-45,94)$$

$$Sd2 = -86,67 \, kNm/m$$

Com isso, o esforço solicitante adotado é de -99,08 kNm/m. Fazendo a altura útil (d), tem-se que:

$$d = \left(\frac{20 + 40}{2}\right) - 3.5 = 26.5 \ cm$$

Dessa forma, tem-se que a Área de Aço (As) é de:

$$As = \frac{96,35 * 10^4}{\left[\left(\frac{500 * 10^3}{1,15} * 0,85 * 0,265 \right) \right]} = 10,12 \ cm^2/m$$

Portanto, utilizando um diâmetro de 16 mm para as barras, tem-se que serão necessárias 6 barras/m.

Contudo, analisando o quantitativo de barras do balanço 1 e do balanço 2, nota-se uma diferença mínima entre eles. Dessa forma, a fim de minimizar erros na execução, será adotado para os dois balanços a quantidade de barras por metro calculadas no balanço 2, uma vez que seja o mais carregado.

1.6. Armadura de distribuição

$$As, dis \ge \begin{cases} 0.9 & cm^2/m \\ 0.5As, min \\ 0.2As, prin \end{cases}$$

$$As, dis \ge \begin{cases} 0.9 & cm^2/m \\ 0.5 * 4.92 \\ 0.2 * 22.49 \end{cases}$$

$$As, dis \ge \begin{cases} 0.9 & cm^2/m \\ 2.46 & cm^2/m \\ 4.50 & cm^2/m \end{cases}$$

Portanto, utilizando um diâmetro de 12,50 mm para as barras, tem-se que serão necessárias 4 barras/m.

1.7. Cálculo do comprimento de transpasse de barras tracionadas

Para o cálculo do comprimento de transpasse é necessário o cálculo do comprimento de ancoragem básico e o comprimento de transpasse mínimo, que serão comuns para todas as barras. Dessa forma, o comprimento de ancoragem básico de uma barra é dado pela Equação a seguir:

$$lb = \frac{\emptyset}{4} * \frac{fyd}{fbd} \tag{15}$$

Onde fbd é:

$$fbd = \eta 1 * \eta 2 * \eta 3 * \frac{0.21}{\gamma c} * \sqrt[3]{fck^2}$$

$$fbd = 2.25 * 1.0 * 1.0 * \frac{0.21}{1.4} * \sqrt[3]{35^2}$$

$$fbd = 0.36 \frac{kN}{cm^2}$$

Com isso, comprimento de ancoragem básico é:

$$lb = \frac{1.6}{4} * \frac{50/1.15}{48.2}$$
$$lb = 48.2 cm$$

O comprimento de transpasse mínimo para barras tracionadas (l0t, min) é dada pelas seguintes premissas:

$$l0t, min = \begin{cases} 0.3 * \alpha 0t * lb \\ 15\emptyset \\ 200 \ mm \end{cases}$$

$$l0t, min = \begin{cases} 0.3 * 1.4 * 48.2 = 20.24 \ cm \\ 15 * 1.6 = 24 \ cm \\ 20 \ cm \end{cases}$$

1.7.1. Para Myr – Barra N04

Inicialmente, calcula-se o comprimento de ancoragem necessário é dado pela Equação a seguir:

$$lb, nec = \alpha 1 * lb * \frac{As, cal}{As, ef} \ge lot, min$$
 (16)
 $lb, nec = 1 * 48.2 * \frac{12,53}{14,07}$

Dessa forma, calcula-se o comprimento de transpasse, dado pela equação seguinte:

lb, nec = 42,92 cm

$$l0t = \alpha 0t * lb, nec$$
 (17)
 $l0t = 1,4 * 42,92$
 $l0t = 60,09 cm$

1.7.2. Para o Mym – Barra N05

Inicialmente, calcula-se o comprimento de ancoragem necessário é dado pela Equação 16 apresentada anteriormente.

$$lb, nec = 1 * 48,2 * \frac{4,92}{6,03}$$

$$lb, nec = 39,33 cm$$

Dessa forma, calcula-se o comprimento de transpasse, dado pela Equação 18 abaixo:

$$l0t = \alpha 0t * lb, nec \tag{18}$$

$$l0t = 1.4 * 36$$

$$l0t = 55,06 cm$$

1.7.3. Para Mym na Laje Central – Barra N07

Inicialmente, calcula-se o comprimento de ancoragem necessário é dado pela Equação 16 apresentada anteriormente:

$$lb, nec = 1 * 48,2 * \frac{9,60}{10,05}$$

$$lb, nec = 46,0 cm$$

Dessa forma, calcula-se o comprimento de transpasse, dado pela Equação 18 apresentada anteriormente:

$$l0t = 1.4 * 46$$

$$l0t = 64,40 cm$$

1.7.4. Para N08 – parte comprimida

Calcula-se o comprimento de ancoragem necessário é dado pela Equação 16 apresentada anteriormente:

$$lb,nec = 1 * 48,2 * \frac{4,50}{4,92}$$

$$lb, nec = 44,08 cm$$

Uma vez que a barra se encontra na parte comprimida da laje, o comprimento de transpasse é equivalente ao comprimento de ancoragem necessário. Portanto, l0t = 44,08 cm.

1.8. Verificação quanto ao esforço cortante

Segundo a NBR 6118/2022 tem-se que o esforço do cortante deve ser:

$$\tau v \le \tau r d \tag{19}$$

Onde,

$$\tau rd = 0.5 * \alpha v2 * fcd * Ae * he * sen2\theta$$
 (20)

Sabendo que:

$$\frac{t}{a} = \frac{0.81}{2} = 0.405$$

$$\frac{lx}{a} = \frac{5.2}{2} = 2.6$$

1.8.1. Para carga móvel

Utilizando como base a Tabela de Rüsch Nr. 99 para interpolação dos dados, tem-se que o cortante para a carga móvel é:

$$Qx^{q} = \phi * (P * ML + P * Mp + P' * Mp')$$

$$Qx^{q} = 1,688 * (75 * 1,09 + 5 * 0,102 + 5 * 0,268)$$

$$Qx^{q} = 141,08 \, kN/m$$

1.8.2. Para carga permanente

- Qx = 0.5 * g * lx
- $gpp = 6.97 \text{ kN/m}^2$
- $gpav = 4.92 \text{ kN/m}^2$
- 1x = 5.2

Com isso, tem-se que Qx^g é:

$$Qx^g = 0.5 * (6.97 + 4.92) * 5.2$$

 $Qx^g = 30.91 \, kN/m$

1.8.3. Verificação do cortante

Dessa forma, tem-se que o cortante (Vd) é:

$$Vd = 1,4 * Qx^g + 1,4 * Qx^q$$

 $Vd = 1,4 * (30,91 + 141,08)$

 $Vd = 240,78 \, kN/m$

Para a verificação do cortante, tem-se que:

$$Vsd \leq Vrd1$$

Onde,

$$Vrd1 = [\tau rd * k * (1,2 + 40\rho 1) + 0,15\sigma cp] * bw * d$$

Sendo,

$$fctk = 0.7 * \left(0.3 * \sqrt[3]{fck^2}\right)$$

$$fcdt = \frac{fctk}{\gamma c}$$

$$\tau rd = 0.25 fcdt$$

$$\rho 1 = \frac{As1}{bw * d}$$

$$k = 1.6 - d$$

Dessa forma, tem-se que:

$$fctk = 0.7 * (0.3 * \sqrt[3]{35^2}) = 2.25$$

$$fcdt = \frac{2.25}{1.4} = 1.60$$

$$\tau rd = \frac{0.25 * 1.60}{10} = 0.0401$$

$$\rho 1 = \frac{22,49}{35 * 100} = 0,0064$$

$$k = 1.6 - 0.35 = 1.25$$

Para estruturas de concreto armado tem-se que $\sigma cp = 0$. Dessa forma, para a força cortante máxima tem-se:

$$Vrd1 = [0.0401 * 1.25 * (1.2 + 40 * 0.0064)] * 100 * 35$$

$$Vrd1 = 255.77 \ kN/m$$

Portanto, para a verificação do cortante tem-se que:

$$Vsd \leq Vrd1$$

$$240.78 \le 255.77$$

1.9. Comprimento de ancoragem

Para o comprimento de ancoragem tem-se a Equação.

$$lb = \frac{\phi}{4} * \frac{Fyd}{Fhd} \tag{21}$$

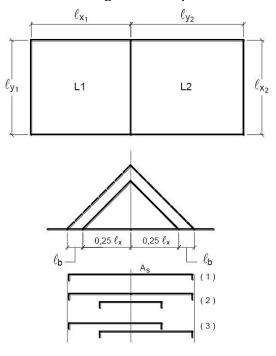
Onde, Fbd é dada pela Equação.

$$Fbd = \eta 1 * \eta 2 * \eta 3 * Fctd$$

$$Fbd = 2,25 * 1 * 1 * \frac{0,21}{1,4} * \sqrt[3]{35^2}$$
(22)

$$Fbd = 3.6 MPa = 0.36 KN/cm^2$$

Dessa forma, tem-se que lb é:


$$lb = \frac{1,6}{4} * \frac{50}{1,15 * 0,36}$$

$$lb = 48,31 cm$$

1.10. Comprimento da armadura negativa nos apoios

A NBR 6118 não especifica o comprimento das barras da armadura da armadura negativa, dessa forma será adotado o critério recomendado na versão da norma NB 1 (1998). É suposto um diagrama triangular para o momento negativo sobre a borda comum às duas lajes, como mostrado na Figura abaixo.

Figura 16 - Extensão da armadura negativa nos apoios com continuidade entre lajes

Fonte: NB 1 (1998)

O triângulo possui base com comprimento equivalente à 0,5lx, onde lx é o maior vão entre os vãos menores das duas lajes:

$$lx \ge \begin{cases} 2.5 \ m \\ 5.2 \ m \end{cases}$$

$$lx = 5.2 m$$

Portanto, o comprimento total para a barra negativa conforme o arranjo 1 é:

$$C = 0.25 * lx + lb$$

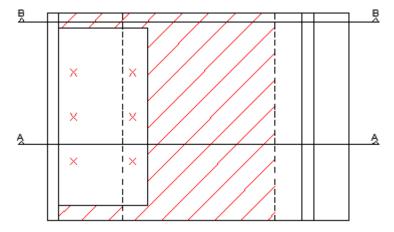
$$C = 0.25 * 5.2 + 0.4831$$

 $C = 1.78 m$

1.11. Armadura de distribuição

$$As, dist \ge \begin{cases} 0.9 & cm^2/m \\ 0.5 * As, min \\ 0.2 * As, prin \end{cases}$$

$$As, dist \ge \begin{cases} 0.9 \ cm^2/m \\ 0.5 * 4.92 = 2.46 \ cm^2/m \\ 0.2 * 22.49 = 4.50 \ cm^2/m \end{cases}$$


Portanto, a armadura de distribuição é de 4 barras com bitola de 12,5 mm.

1.12. Cálculo das vigas principais

1.12.1. Viga principal 1

Para o cálculo das vigas tem-se que a situação de máximo esforço na Viga 1 é quando o veículo tipo (TB-450) está no limite do guarda rodas e a carga de multidão em volta até a Viga 2, visualizado pelo esquema na Figura 17.

Figura 17 - Esquema do veículo tipo para o máximo esforço na Viga 1

Diante disso, sabendo que a viga é isostática, tem-se que a linha de influência nessa situação para o Corte A-A é:

Figura 18 - Linha de influência Corte A-A

Para carga devido ao veículo, tem-se:

$$\frac{y1}{6,80} = \frac{1}{5,20}$$
$$y1 = 1,30$$

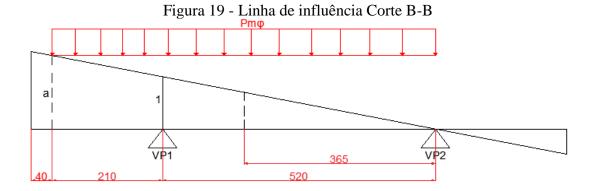
$$\frac{y2}{4,80} = \frac{1}{5,20}$$
$$y2 = 0,82$$

Dessa forma, tem-se que:

$$P = (Pr1 * y1 * \varphi) + (Pr2 * y2 * \varphi)$$

$$P = (75 * 1,3 * \varphi) + (75 * 0,82 * \varphi)$$

$$P = 166,5 \varphi \text{ kN}$$


Já para a carga de multidão, por se tratar de uma carga uniformemente distribuída, fazse necessário sua conversão em uma carga pontual localizada no centro. Com isso, tem-se que:

$$\frac{y3}{2,15} = \frac{1}{5,20}$$
$$y1 = 0,41$$

Dessa forma, tem-se:

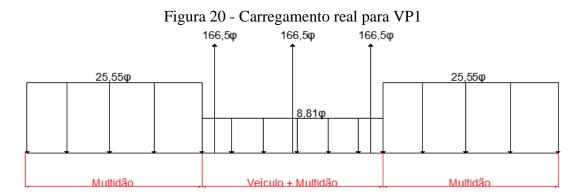
$$PA = (Pm * y3 * \varphi)$$

 $PA = (5 * 0.41 * \varphi)$
 $PA = 8.81 \varphi \text{ kN}$

Para o Corte B-B, onde só há carga de multidão tem-se a seguinte linha de influência representada na Figura 19.

Com isso, tem-se que:

$$\frac{a}{3.5} = \frac{1}{5.20}$$

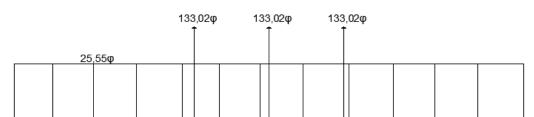

$$y1 = 0.70$$

$$pB = 5 * 7.3 * \varphi * 0.70$$

$$pB = 25.55\varphi \text{ kN}$$

1.12.1.1. Carregamento móvel real na viga principal 1

O carregamento real é demonstrado na Figura 20.


Para facilitador de cálculos, faz-se um preenchimento de carga a fim de ficar uniformemente distribuída em toda a seção. E com isso, faz-se uma redução da carga pontual para a compensação do valor acrescido.

Dessa forma, tem-se que o valor a ser acrescido é de:

$$V = (25,55 - 8,81) * \phi * 6 = 100,44 \phi \text{ kN}$$

Multidão

Esse valor V deverá ser reduzido das três cargas pontuais provindas dos eixos do trem tipo. Dessa forma, tem-se uma redução de $33,48\phi$ em cada um dos eixos, totalizando uma carga de $133,02~\phi$. Portanto, o novo carregamento é apresentado na Figura 21.

Veículo + Mulfidão

Figura 21 - Carregamento correspondente na VP1

1.12.1.2. Coeficiente de impacto da viga (φ) para o vão central

$$\phi = CIV * CNF * CIA$$

Onde, para vãos maiores que 10 metros se tem um CIV equivalente a:

$$CIV = 1 + 1,06 * \left(\frac{20}{LIV + 50}\right)$$

$$CIV = 1 + 1,06 * \left(\frac{20}{20 + 50}\right) = 1,30$$

O CNF é dado pela equação abaixo, sabendo-se que são 2 faixas de tráfego

$$CNF = 1 - 0.005(2 - 2) > 0.9$$

 $CNF = 1$

E o Para obras em concreto ou mistas, o CIA é igual a 1,25;

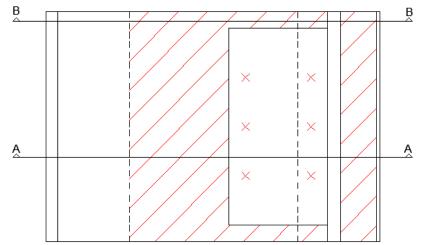
Portanto, o coeficiente de impacto é:

$$\varphi = 1.30 * 1 * 1.25 = 1.625$$

1.12.1.1. Coeficiente de impacto da viga (φ) para o balanço

- Para vãos menores que 10 metros, tem-se que o CIV é 1,35.
- CNF para 2 faixas é igual a 1;

E o Para obras em concreto ou mistas, o CIA é igual a 1,25;


Portanto, para o balanço tem-se o seguinte valor de coeficiente de impacto:

$$\varphi = 1.35 * 1 * 1.25 = 1.688$$

1.12.2. Viga principal 2

Para o cálculo das vigas tem-se que a situação de máximo esforço na Viga 2 é quando o veículo tipo (TB-450) está no limite do guarda rodas e a carga de multidão em volta até a Viga 1, considerando a carga de pedestre, visualizado pelo esquema na Figura 22.

Figura 22 - Esquema do veículo tipo para o máximo esforço na VP2

Diante disso, sabendo que a viga é isostática, tem-se que a linha de influência para essa situação para o Corte A-A é:

y2

Figura 23 - Linha de influência Corte A-A

Para carga de veículo, tem-se que as cargas correspondentes em função de φ é:

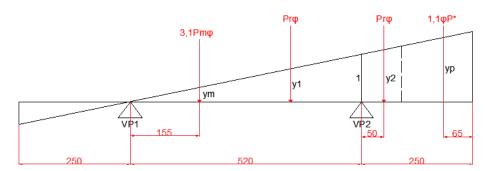


Figura 24 - Cargas pontuais correspondentes à carga pontual

Com isso, tem-se que:

$$\frac{y1}{3,6} = \frac{1}{5,20}$$

$$y1 = 0.69$$

$$\frac{y2}{5,6} = \frac{1}{5,20}$$

$$y2 = 1,07$$

Dessa forma, tem-se que:

$$P = (Pr1 * y1 * \varphi) + (Pr2 * y2 * \varphi)$$

$$P = (75 * 0.69 * \varphi) + (75 * 1.07 * \varphi)$$

$$P = 132 \varphi \text{ kN}$$

Para carga de multidão e de pedestre, tem-se que as cargas correspondentes em função de ϕ é:

$$\frac{ym}{1,55} = \frac{1}{5,2}$$

$$ym = 0.29$$

$$\frac{yp}{7,05} = \frac{1}{5,2}$$

$$yp = 1,35$$

Dessa forma, tem-se:

$$PA = (Pm * ym * \varphi * dm) + (P * * yp * dp)$$

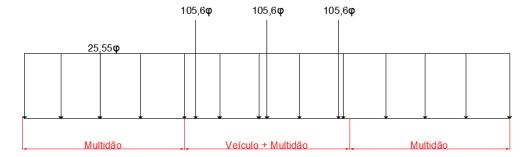
$$PA = (5 * 0.29 * \varphi * 3.1) + (3 * 1.1 * 1.35)$$

$$PA = 4.49 \varphi + 4.45 \text{ kN}$$

1.12.2.1. Carregamento móvel real na viga principal 2

Tem-se que o carregamento real é demonstrado na Figura 25.

Figura 25 - Carregamento móvel real para VP2


Para facilitador de cálculos, faz-se um preenchimento de carga a fim de ficar uniformemente distribuída em toda a seção. E com isso, faz-se uma redução da carga pontual para a compensação do valor acrescido.

Dessa forma, tem-se que o valor a ser acrescido é de:

$$V = [(17,69\phi + 4,45) - (4,49\phi + 4,45)] * 6 = 79,2\phi \text{ kN}$$

Esse valor V deverá ser reduzido das três cargas pontuais provindas dos eixos do trem tipo. Dessa forma, tem-se uma redução de 26,4φ em cada um dos eixos, totalizando uma carga de 105,6φ. Portanto, o novo carregamento é apresentado na Figura 26.

Figura 26 - Carregamento correspondente na VP2

1.12.2.2. Coeficiente de impacto da viga (φ) para o vão central

$$\phi = CIV * CNF * CIA$$

Onde, CIV é:

$$CIV = 1 + 1,06 * \left(\frac{20}{LIV + 50}\right)$$

$$CIV = 1 + 1,06 * \left(\frac{20}{20 + 50}\right) = 1,30$$

Sabendo que são 2 faixas de tráfego, tem-se que o CNF é:

$$CNF = 1 - 0.005(2 - 2) > 0.9$$

 $CNF = 1$

Para obras em concreto ou mistas, o CIA é igual a 1,25;

Portanto, o coeficiente de impacto é:

$$\varphi = 1.30 * 1 * 1.25 = 1.625$$

1.12.2.3. Coeficiente de impacto da viga para o balanço

- Para vãos menores que 10 metros, tem-se que o CIV é 1,35.
- CNF para 2 faixas é igual a 1;
- E o Para obras em concreto ou mistas, o CIA é igual a 1,25;

Portanto, para o balanço tem-se o seguinte valor de coeficiente de impacto:

$$\varphi = 1.35 * 1 * 1.25 = 1.688$$

1.13. Momento da viga principal 1 devido ao carregamento móvel

Para o cálculo dos momentos nas longarinas, com auxílio do *software* Ftool, tem-se o seguinte carregamento móvel apresentado na Figura 27.

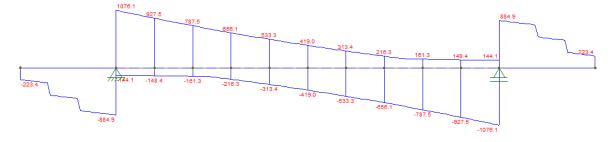
Figura 27 - Carregamento móvel na Longarina 1

25.55 NNm

25.55 NN

Para o cálculo dos momentos divide-se o comprimento da laje central com seções a cada 2m, totalizando em 11 seções. Com isso, tem-se que os momentos em cada seção é apresentado na Tabela 1.

Tabela 1 - Momentos e esforços cortantes devido ao carregamento móvel por seção na Longarina 1

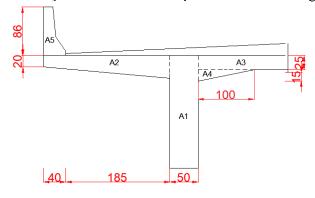

Seção	Mq+ (kNm)	Mq- (kNm)	Vq+ (kN/m)	Vq- (kN/m)
0	0	-2882,7	1076,1	-884,9
1	1878,7	-2648,1	927,5	-148,4
2	3317,5	-2413,4	787,5	-161,3
3	4316,5	-2178,8	656,1	-216,3
4	4942,7	-1944,2	533,3	-313,4
5	5162,6	-1709,6	419,0	-419,0
6	4942,7	-1944,2	313,4	-533,3
7	4316,5	-2178,8	216,3	-656,1
8	3317,5	-2413,4	161,3	-787,5
9	1878,7	-2648,1	148,4	-927,5
10	0	-2882,7	884,9	-1076,1

Abaixo serão apresentados os diagramas de momento e cortante tirados do software Ftoll.

2882.7 2648.1 2413.4 2178.8 1944.2 1708.6 1944.2 2178.8 2413.4 2648.1 2882.7 1878.7 1878.7 3317.6 4316.5 4942.7 4316.5 3317.6

Figura 28 - Diagrama de momento fletor na VP1 devido ao carregamento móvel

Figura 29 - Diagrama de esforço cortante na VP1 devido ao carregamento móvel



1.14. Carregamento permanente V1

1.14.1. Longarina 1

Para o carregamento permanente tem-se: o peso próprio da longarina (A1); Laje em balanço (A2); laje central (A3 e A4), guarda rodas (A5).

Figura 30 - Seção transversal da superestrutura na Longarina 1

• Peso da longarina (A1)

$$\frac{l}{12} \le hvp \le \frac{l}{10}$$

$$\frac{20}{12} \le hvp \le \frac{20}{10}$$

$$(23)$$

Dessa forma, o hvp adotado será de 2 metros. Com isso, tem-se que:

$$A1 = bw * hvp$$

$$A1 = 0.50 * 2 = 1.0 m^2$$

• Laje em balanço (A2)

$$A2 = \left(\frac{0,40 + 0,2}{2}\right) * 2,25 = 0,675 m^2$$

• Laje central (A3 e A4)

$$A3 = 0.25 * 2.35 = 0.588 m^2$$

$$A4 = \frac{1 * 0.15}{2} = 0.075 \, m^2$$

• Guarda rodas (A5)

$$A5 = \frac{(0,17+0,23)*0,4}{2} + \frac{(0,24+0,4)*0,26}{2}$$
$$A5 = 0,2419 m^2$$

Além disso, faz-se o peso próprio do pavimento (Apav) e do recapeamento.

$$Apav = \frac{(0,04+0,163)*4,1}{2} + \frac{(0,16+0,14)*0,6}{2} = 0,506 m^{2}$$
$$grec = 2*4,7 = 9,4 \ kN/m$$

Dessa forma, faz-se uma combinação dos carregamentos permanentes.

$$g1 = (A1 + A2 + A3 + A4 + A5) * Ycon + (Apav * Ypav) + grec$$

$$g1 = (1,0 + 0,675 + 0,588 + 0,075 + 0,2419) * 25 + (0,506 * 24) + 9,4$$

$$g1 = 86,04 \text{ kN/m}$$

$$(24)$$

1.14.2. Transversina

Para o cálculo do peso próprio das transversinas, primeiramente encontra-se o valor da altura e da base, calculadas a partir da altura da viga. Dessa forma, tem-se as seguintes premissas.

$$htrans \ge 75\%hvp \tag{25}$$

$$htrans \ge 0.75 * 2 = 1.5 m$$

$$20 \le btrans \le 25$$

Contudo, para utilização de aparelhos de reparo é necessária uma altura mínima de 20 cm para seu funcionamento ideal, sendo assim, foi impreterível reduzir a altura da transversina. Dessa forma, as dimensões finais da transversina são de 0,2 m para a base e 1,30 m para altura.

Com isso, encontra-se a distância entre as transversinas, adotando o menor valor entre as premissas abaixo.

$$dtrans \le 2 * dvp = 2 * 5,2 = 10,4 m$$

 $dtrans = 10 m$

Assim sendo, a distância adotada entre as transversinas é de 10 m. Com isso, faz-se o cálculo dos carregamentos das transversinas entre apoios e no vão.

$$PTv = btrans * htrans * Ycon * \frac{lvão}{2}$$

$$PTv = 0.2 * 1.5 * 25 * \frac{4.7}{2}$$

$$Ptv = 17.625 kN$$

$$PTa = 0.2 * 1.5 * 25 * \frac{4.7}{2}$$

$$PTa = 17.625 kN$$

1.14.3. Elementos de cabeceira

S II

Figura 31- Elementos de cabeceira

1.14.3.1. Ala

Como dados iniciais tem-se:

- bcort = 0.25 m
- hcort = 2 m

•
$$l1 = 1.5 * (hcort - 0.5) = 1.5 * (2.0 - 0.5) = 2.25 m$$

Dessa forma, tem-se que a área da ala é:

$$Aala = (0,5 * li) + (0,3 * (hvig - 0,5) + \frac{(l1 - 0,3) * (hvig - 0,5)}{2}$$

$$Aala = (0,5 * 2,25) + (0,3 * (2 - 0,5) + \frac{(2,25 - 0,3) * (2 - 0,5)}{2}$$

$$Aala = 3.04 m^{2}$$

Com isso, tem-se que o carregamento proveniente da Ala é:

$$Pala = Aala * bcort * Yc$$
 (27)
 $Pala = 3.04 * 0.25 * 25 = 19.00 kN$

1.14.3.2. Cortina

Para o cálculo da cortina, primeiramente encontra-se o comprimento total da transversina.

$$ltrans = 10,20 - 2 * 0,25 = 9,7 m$$

Dessa forma, tem-se que o carregamento proveniente da Cortina é:

$$Pcort = bcort * hcort * Ycon * \frac{ltrans}{2}$$

$$Pcort = 0.25 * 2 * 25 * \frac{10.20}{2}$$
(28)

Pcort = 63,75 kN

1.14.3.3. Viga inferior (vigueta)

$$Pvi = l2 * bcort * Ycon * \frac{ltrans - 2 * bcort}{2}$$

$$Pvi = 0,3 * 0,25 * 25 * \frac{10,2 - 2 * 0,25}{2}$$

$$Pvi = 9,09 kN$$
(29)

1.14.3.4. Terra sobre a vigueta

$$Pterra = l2 * (hcort - bcort) * Yterra * \left(\frac{trans - bcort}{2}\right)$$

$$Pterra = 0,3 * (2 - 0,25) * Yterra * \left(\frac{9,7}{2}\right)$$

Onde, $\forall terra = 18 \, kN/m^3$. Dessa forma, tem-se que o carregamento proveniente da terra é:

$$Pterra = 0.3 * (2 - 0.25) * 18 * \left(\frac{9.7}{2}\right)$$

$$Pterra = 45.83 \ kN$$

1.14.3.5. Pavimentação

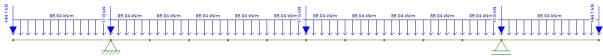
Inicialmente, tem-se que:

$$gpav + Rec = (24 * 0,506) + 9,4$$

 $gpav + Rec = 21,54 \text{ kN}$

Dessa forma, o carregamento proveniente da pavimentação é:

$$Ppav = 21.54 * 0.3 = 6.46 kN$$


Com isso, tem-se que o carregamento total dos elementos de cabeceira é:

$$Pcab = 19,00 + 63,75 + 9,09 + 45,83 + 6,46$$

 $Pcab = 144,13 \ kN$

1.14.4. Cálculo dos momentos para VP1

Portanto, para o cálculo dos momentos na longarina 1, com auxílio do *software* Ftool, tem-se o seguinte carregamento permanente apresentado na Figura 32.

Figura 32 - Carregamento permanente na Longarina 1

Para o cálculo dos momentos divide-se o comprimento da laje central com seções a cada 2 m, totalizando em 11 seções. Com isso, tem-se que os momentos e os cortantes em cada seção é apresentada na Tabela 2.

Tabela 2 - Momentos e esforços cortantes devido ao carregamento permanente por seção na Longarina 1

Seção	Mg (kNm)	Vg (kN/m)
	450 4 00	869,2
0	-1796,00	-574,3
1	-229,70	697,1
2	992,50	525,0
3	1870,50	353,0
4	2404,30	180,9

_	2504.00	8,8
5	2594,00	-8,8
6	2404,30	-180,9
7	1870,50	-353
8	992,50	-525
9	-229,70	-697,1
10	150 4 00	574,3
10	-1796,00	-869,2

Abaixo serão apresentados os diagramas de momento e cortante tirados do software Ftoll.

Figura 33 - Diagrama de Momento na VP1 devido ao carregamento permanente

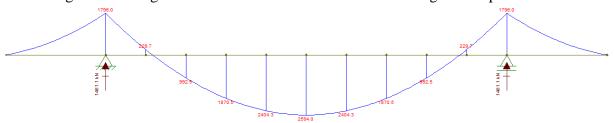
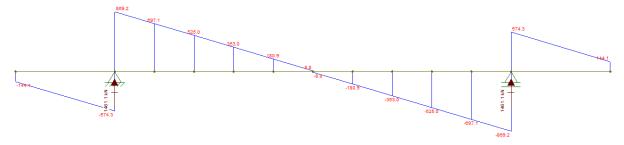



Figura 34 - Diagrama de Cortante na VP1 devido ao carregamento permanente

Com isso, faz-se a combinação dos momentos máximos e mínimos dos carregamentos móvel e permanente a fim de determinar a área de aço necessária devido aos momentos.

1.15. Armadura longitudinal da longarina 1

Dessa forma, adota-se o maior valor das seguintes premissas.

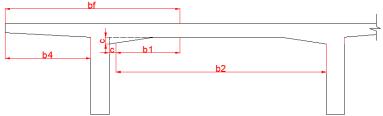
• Para Momento Máximo

$$Mm ax \ge \begin{cases} 1,4Mg + 1,4Mg^+ \\ 0,9Mg + 1,4Mg^+ \end{cases}$$

Para Momento mínimo

$$Mmin \ge \begin{cases} 1,4Mg + 1,4Mg^- \\ 0,9Mg + 1,4Mg^- \end{cases}$$

Dessa forma, com auxílio do *software* Excel, tem-se que aos momentos máximos e mínimos e os coeficientes de fadiga em cada seção é dada por meio da Tabela 3.


Tabela 3 - Momentos máximos e mínimos na VP1

Seção	Mmáx (kNm)	Mmín (kNm)
0	-2514,40	-6550,18
1	2423,45	-4028,92
2	6034,00	-2485,51
3	8661,80	-431,62
4	10285,80	644,14
5	10859,24	1238,16
6	10285,80	644,14
7	8661,80	-431,62
8	6034,00	-2485,51
9	2423,45	-4028,92
10	-2514,40	-6550,18

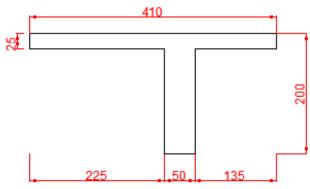
1.15.1. Viga em seção T

Para transformar uma viga retangular em seção T, é necessário a determinação de alguns comprimentos conforme esquema representado na Figura 35.

Figura 35 - Esquema para determinar seção T

• Para b1

$$b1 \le {0,1*a \atop 0,5*b2}$$


Sendo, $a = 0.6l = 0.6 * 2000 = 1200 \ cm$. E $b2 = l - 2c = 470 - 2 * 15 = 440 \ cm$. Dessa forma, adotando-se o menor valor, tem-se que b1 é.

$$b1 \le {0,1 * 1200 = 120 \ cm \atop 0,5 * 450 = 225 \ cm}$$

bf

$$bf = b4 + c + b1 + bw$$

 $bf = 230 + 15 + 120 + 50$
 $bf = 410 cm$

Figura 36 – VP1 em seção T

1.15.2. Cálculo linha neutra

Para exemplo, será demonstrado o cálculo para a seção de maior momento. Com isso, determina-se a posição da linha neutra (x) determinada pela Equação.

$$x = 1,25d * \left(1 - \sqrt{1 - \left(\frac{Md}{0,425 * Fcd * bf * d^2}\right)}\right)$$
 (30)

Onde,

•
$$d = hvig - d' = 200 - 35 = 165 cm$$

- Fck = 35 MPa
- bf = 410 cm

Dessa forma, para a seção de maior momento, tem-se que.

$$x = 1,25 * 165 * \left(1 - \sqrt{1 - \left(\frac{10859,24 * 100}{0,425 * \frac{3,5}{1,4} * 410 * 165^2}\right)}\right)$$

$$x = 9.67 cm$$

Com isso, faz-se as seguintes verificações.

$$hf \ge 0.8 * 9.67$$

 $25 \ge 7.74$

$$^{x}/_{d} \le 0.45$$

$$0,0586 \le 0,45$$

Dessa forma, a área de aço é dada por:

$$As = \frac{Md}{fyd(d-0.4x)}$$

$$As = \frac{10859.24 * 100}{\frac{50}{1.15} * (165 - 0.4 * 9.67)}$$

$$As = 155 cm^{2}$$
(31)

Diante disso, na Tabela 4 é apresentado um resumo dos momentos máximos e mínimos, da área de aço e da quantidade de barras em cada seção.

10

Tab	Tabela 4 - Resumo área de aço e quantitativo de barras na VP1					
Seção	Mmáx (kNm)	Mmín (kNm)	As+ (cm²)	As- (cm²)		
0	-2514,40	-6550,18	35,24	104,97		
1	2423,45	-4028,92	33,96	60,73		
2	6034,00	-2485,51	85,21	36,28		
3	8661,80	-431,62	123,03	6,06		
4	10285,80	644,14	146,63	9,08		
5	10859,24	1238,16	155,00	17,65		
6	10285,80	644,14	146,63	9,08		
7	8661,80	-431,62	123,03	6,06		
8	6034,00	-2485,51	85,21	36,28		
9	2423,45	-4028,92	33,96	60,73		

1.15.3. Coeficiente de fadiga para os momentos fletores (k)

-2514,40

Para o cálculo da fadiga determina-se o momento fletor M1 e M2, sendo M1 o de maior valor e M2 o de menor valor em módulo, para cada seção e, com isso, calcula-se o coeficiente de fadiga (k), que possui as seguintes premissas.

-6550,18

35,24

104,97

Se M1 e M2 tiverem o mesmo sinal:

$$k = \frac{M1 - M2}{M1} * \frac{5}{3,6}$$

Se M1 e M2 tiverem sinais opostos:

$$k = \frac{|M1| + 0.5 * |M2|}{|M1|} * \frac{5}{3.6}$$

Sendo que obrigatoriamente $k \ge 1$. Dessa forma, tem-se a Tabela 5 com o resumo dos coeficientes de fadiga (k) para cada uma das seções.

Tabela 5 - Coeficiente de fadiga (k) e Área de aço da fadiga para momentos na VP1

Seção	Mmax (kNm)	Mmin (kNm)	k	As,fad I (cm²)	Qtd. de barras (\$\phi25)	As,fad S (cm²)	Qtd. de barras (\$25)
0	-2514,40	-6550,18	1,00	35,24	8	104,97	22
1	2423,45	-4028,92	1,81	61,34	13	109,72	23
2	6034,00	-2485,51	1,67	142,72	30	60,76	13
3	8661,80	-431,62	1,42	175,13	36	8,63	2
4	10285,80	644,14	1,30	190,90	39	11,82	3
5	10859,24	1238,16	1,23	190,74	39	21,71	5
6	10285,80	644,14	1,30	190,90	39	11,82	3
7	8661,80	-431,62	1,42	175,13	36	8,63	2
8	6034,00	-2485,51	1,67	142,72	30	60,76	13
9	2423,45	-4028,92	1,81	61,34	13	109,72	23
10	-2514,40	-6550,18	1,00	35,24	8	104,97	22

1.15.4. Detalhamento da armadura

A fim de garantir que o concreto penetre com facilidade dentro da forma e envolva completamente as barras de aço das armaduras, a NBR 6118 estabelece os seguintes espaçamentos livres mínimos entre as faces das barras longitudinais.

• Direção horizontal (ah)

$$ahmin \ge \begin{cases} 2 cm \\ \phi l = 2.5 cm \\ 1.2d = 0.5 * 1.9 = 2.3 cm \end{cases}$$

Dessa forma, o espaçamento mínimo na direção horizontal é de 2,5 cm.

• Direção vertical (av)

$$avmin \ge \begin{cases} 2 cm \\ \phi l = 2.5 cm \\ 0.5d = 0.5 * 1.9 = 1 cm \end{cases}$$

Dessa forma, o espaçamento mínimo na direção vertical é de 2,5 cm.

1.16. Verificação do cortante

Dessa forma, adota-se o maior valor das seguintes premissas.

• Para Esforço Cortante Máximo

$$Vm\acute{a}x \ge \begin{cases} 1,4Vg + 1,4Vq^{+} \\ 0,9Vg + 1,4Vq^{+} \end{cases}$$

• Para Momento mínimo

$$Vmin \ge \begin{cases} 1.4Vg + 1.4Vq^{-} \\ 0.9Vg + 1.4Vq^{-} \end{cases}$$

Dessa forma, com auxílio do *software* Excel, tem-se que aos momentos máximos e mínimos e os coeficientes de fadiga em cada seção é dada por meio da Tabela 6.

Tabela 6 - Esforço cortante máximo e mínimo na VP1

Seção	Vmáx (kN)	Vmín (kN)
	2723,42	-456,58
0	989,67	-2042,88

1	2274,44	419,63
2	1837,50	246,68
3	1412,74	14,88
4	999,88	-275,95
5	598,92	-578,68
5	578,68	-598,92
6	275,95	-999,88
7	-14,88	-1412,74
8	-246,68	-1837,50
9	-419,63	-2274,44
10	2042,88	-989,67
10	456,58	-2723,42

1.16.1. Cálculo da Área de Aço mínima para o cortante

Para o cálculo da área de aço mínima tem-se a seguinte equação:

$$As, min = \frac{20 * fctm}{100} * bw$$

$$As, min = \frac{20 * 0.321}{50} * 50$$

$$As, min = 6.42 cm^{2}$$
(32)

1.16.2. Modelo de cálculo 1

$$Vsd \leq Vrd2$$

Sendo Vrd2 calculado por meio da Equação 25.

$$Vrd2 = 0.27 * \left(1 - \frac{fck}{250}\right) * fcd * bw * d$$

$$Vrd2 = 0.27 * \left(1 - \frac{35}{250}\right) * \frac{3.5}{1.4} * 50 * 165$$

$$Vrd2 = 4789.13 kN$$
(33)

Para a seção 0 tem-se que Vsd=2723,42~kN. Portanto, o cortante está de acordo com a verificação. A Tabela 7 mostra a verificação para todas as seções.

Tabela 7 – Verificação esforço cortante para o Modelo 1 na VP1

Seção	Vmáx (kN)	Vrd2 (kN)	
	2723,42	4789,13	
0	989,67	4789,13	
1	2274,44	4789,13	
2	1837,50	4789,13	
3	1412,74	4789,13	
4	999,88	4789,13	
5	598,92	4789,13	
5	578,68	4789,13	
6	275,95	4789,13	
7	-14,88	4789,13	
8	-246,68	4789,13	
9	-419,63	4789,13	
10	2042,88	4789,13	
10	456,58	4789,13	

1.16.2.1. Cálculo da armadura transversal para o Modelo de Cálculo I

Para calcular a armadura transversal devem ser determinadas as parcelas da força cortante que serão absorvidas pelos mecanismos complementares ao de treliça (Vc) e pela armadura (Vsw) de tal modo que:

$$Vsd = Vc + Vsw$$

Na flexão simples, a parcela Vc é determinada pela Equação abaixo:

$$Vc = Vc0 = 0.6 * \frac{0.7 * 0.3\sqrt[3]{fck^2}}{10 \text{V}c} * bw * d$$

$$Vc = Vc0 = 0.6 * \frac{0.7 * 0.3\sqrt[3]{25^2}}{10 * 1.4} * 50 * 165$$

$$Vc = Vc0 = 794.47$$
(34)

Dessa forma, tem-se que a parcela da armadura para a seção 0 é:

$$Vsw = Vsd - Vc$$

 $Vsw = 2723,42 - 794,47$
 $Vsw = 1928,95 kN$

Com isso, a área de aço positiva ou negativa pelo Modelo de Cálculo I é dada pela Equação.

$$Asw += \frac{Vsw}{39,2d}$$

$$Asw += \frac{1928,95}{39,2 * 165} * 100$$

$$Asw += 29,82 cm^2/m$$
(35)

Portanto, serão necessárias 8 barras de φ16 mm. Dessa forma, nas Tabelas 8 e 9 serão apresentados quadros resumos dos cortantes máximos e mínimos e suas respectivas áreas de aço em cada seção, respeitando a área de aço mínima para o Modelo de Cálculo 1.

Tabela 8 - Área de aço para o cortante máximo na VP1 para o Modelo de Cálculo I

Seção	Vsd+ (kN)	Vc0 (kN)	Vsw (kN)	Asw+ (cm²/m)
	2723,42	794,47	1928,95	29,82
0	989,67	794,47	195,20	6,42
1	2274,44	794,47	1479,97	22,88
2	1837,50	794,47	1043,03	16,13
3	1412,74	794,47	618,27	9,56
4	999,88	794,47	205,41	6,42
_	598,92	794,47	-195,55	6,42
5	578,68	794,47	-215,79	6,42
6	275,95	794,47	-518,52	8,02
7	-14,88	794,47	-809,35	12,51
8	-246,68	794,47	-1041,15	16,10
9	-419,63	794,47	-1214,10	18,77
	2042,88	794,47	1248,41	19,30
10	456,58	794,47	-337,89	6,42

Tabela 9 - Área de aço para cortante mínimo na VP1 para o Modelo de Cálculo I

Seção	Vsd- (kN)	Vc0 (kN)	Vsw (kN)	Asw- (cm²/m)
	-456,58	794,47	-1251,05	19,34
0	-2042,88	794,47	-2837,35	43,87

	1	,		
1	419,63	794,47	-374,84	6,42
2	246,68	794,47	-547,79	8,47
3	14,88	794,47	-779,59	12,05
4	-275,95	794,47	-1070,42	16,55
	-578,68	794,47	-1373,15	21,23
5	-598,92	794,47kN	-1393,39	21,54
6	-999,88	794,47	-1794,35	27,74
7	-1412,74	794,47kN	-2207,21	34,13
8	-1837,50	794,47	-2631,97	40,69
9	-2274,44	794,47	-3068,91	47,45
	-989,67	794,47	-1784,14	27,58
10	-2723,42	794,47	-3517,89	54,39

1.16.3. Modelo de Cálculo II com $\theta = 30^{\circ}$

1.16.3.1. Verificação da compressão nas bielas

$$Vrd2 = 0.54 * \left(1 - \frac{fck}{250}\right) * fcd * bw * d * sen^2\theta(\cot \alpha + \cot \alpha\theta)$$
(36)

Para estribos verticais, $\alpha = 90^{\circ}$. Portanto,

$$Vrd2 = 0.54 * \left(1 - \frac{35}{250}\right) * 3.5 * 50 * 165 * sen^2 30 (cotg90 + cotg30)$$

$$Vrd2 = 4142.59 \ kN$$

Para a seção 0 tem-se que Vsd=2723,42~kN. Portanto, o cortante está de acordo com a verificação. A Tabela 10 mostra a verificação para todas as seções.

Tabela 10 - Verificação esforço cortante para o Modelo de Cálculo II na VP1

Seção	Vsd (kN)	Vrd2 (kN)
	2723,42	4142,59
0	989,67	4142,59
1	2274,44	4142,59
2	1837,50	4142,59
3	1412,74	4142,59
4	999,88	4142,59
5	598,92	4142,59
5	578,68	4142,59
6	275,95	4142,59
7	-14,88	4142,59
8	-246,68	4142,59
9	-419,63	4142,59
	2042,88	4142,59
10	456,58	4142,59

1.16.3.2. Cálculo da armadura transversal para o Modelo de Cálculo II

Para calcular a armadura deve-se determinar as parcelas da força cortante solicitante que serão absorvidas pelos mecanismos complementares ao de treliça (Vc) e pela armadura (Vsw), de tal modo que:

$$Vsd = Vc + Vws$$

Na flexão simples, a parcela Vc é igual a Vc1. Para isso, deve-se determinar a força Vc0, contudo, essa parcela é igual à determinada no Modelo de Cálculo I, ou seja, Vc0 não depende do modelo de cálculo utilizado.

A força Vc1 apresenta uma relação inversa com a solicitação de cálculo Vsd. Como Vsd é maior que Vc0, a parcela Vc1 é calculada conforme a Equação 30, exemplificada pela seção 0.

$$Vc = Vc1 = \frac{Vrd2 - Vsd}{Vrd2 - Vc0}$$

$$Vc1 = \frac{4142,59 - 2723,42}{4142,59 - 794,47}$$

$$Vc1 = 336,75 \, kN$$
(37)

Dessa forma, tem-se que a parcela da armadura para a seção 0 é:

$$Vsw = Vsd - Vc1$$

 $Vsw = 2723,42 - 336,75$
 $Vsw = 2386,67 kN$

Com isso, a área de aço positiva ou negativa pelo Modelo de Cálculo II é dada pela Equação 27.

$$Asw += \frac{Vsw}{0.9d * fyw(cotg\alpha + cotg\theta) * sen\alpha}$$

$$Asw += \frac{2386,67}{0.9 * 165 * \frac{50}{1,15}(cotg90 + cotg30) * sen90}$$

$$Asw += 21,37 cm^{2}/m$$
(38)

Portanto, serão necessárias 6 barras de \$\phi16\$ mm. Dessa forma, nas Tabelas 11 e 12 serão apresentados quadros resumos dos cortantes máximos e mínimos e suas respectivas áreas de aço em cada seção, respeitando a área de aço mínima para o Modelo de Cálculo II.

Tabela 11 - Área de aço para o cortante máximo na VP1 para o Modelo de Cálculo II

Seção	Vsd+ (kN)	Vc1 (kN)	Vsw (kN)	Asw+ (cm²/m)
	2723,42	336,75	2386,67	21,37
0	989,67	748,15	241,52	6,42
1	2274,44	443,29	1831,15	16,39
2	1837,50	546,97	1290,53	11,55
3	1412,74	647,76	764,98	6,85
4	999,88	745,72	254,16	6,42
_	598,92	840,87	-241,95	6,42
5	578,68	845,67	-266,99	6,42
6	275,95	917,50	-641,55	6,42
7	-14,88kN	986,51	-1001,39	8,97
8	-246,68	1041,52	-1288,20	11,53
9	-419,63	1082,55	-1502,18	13,45
10	2042,88	498,23	1544,65	13,83
10	456,58	874,64	-418,06	6,42

Tabela 12 - Área de aço para o cortante mínimo na VP1 para o Modelo de Cálculo II

Seção	Vsd- (kN)	Vc1 (kN)	Vsw (kN)	Asw- (cm²/m)
	-456,58	1091,32	-1547,90	13,86
0	-2042,88	1467,73	-3510,61	31,43

1	410.62	002.41	162.70	6.42
1	419,63	883,41	-463,78	6,42
2	246,68	924,45	-677,77	6,42
3	14,88	979,45	-964,57	8,64
4	-275,95	1048,46	-1324,41	11,86
_	-578,68	1120,29	-1698,97	15,21
5	-598,92	1125,10	-1724,02	15,43
6	-999,88	1220,24	-2220,12	19,88
7	-1412,74	1318,21	-2730,95	24,45
8	-1837,50	1419,00	-3256,50	29,15
9	-2274,44	1522,68	-3797,12	33,99
10	-989,67	1217,82	-2207,49	19,76
10	-2723,42	1629,21	-4352,63	38,97

1.16.4. Coeficiente de fadiga para o cortante (k)

Para o cálculo da fadiga determina-se para o esforço cortante V1 e V2, sendo V1 o de maior valor e V2 o de menor valor em módulo, para cada seção e, com isso, calcula-se o coeficiente de fadiga (k), que possui as seguintes premissas.

• Se V1 e V2 tiverem o mesmo sinal:

$$k = \frac{V1 - V2}{V1} * \frac{5}{2.8}$$

• Se V1 e V2 tiverem sinais opostos:

$$k = \frac{5}{2,8}$$

Sendo que obrigatoriamente $k \ge 1$. Dessa forma, tem-se a Tabela 13 com o resumo dos coeficientes de fadiga (k), área de aço final e quantidade de barras necessárias para cada uma das seções.

Tabela 13 - Resumo da área de aço final considerando a fadiga na VP1

Seção	Vmax (kN)	Vmin (kN)	k	As,fad I (cm²)	Qtd. de barras (φ25)	As,fad S (cm²)	Qtd. de barras (\$\phi25)
	2723,42	-456,58	1,79	53,26	7	34,54	5
0	989,67	-2042,88	1,79	11,46	2	78,33	10
1	2274,44	419,63	1,46	33,32	5	9,35	2
2	1837,50	246,68	1,55	24,93	4	13,09	2
3	1412,74	14,88	1,77	16,89	3	21,30	3
4	999,88	-275,95	1,79	11,46	2	29,55	4
1	598,92	-578,68	1,79	11,46	2	37,91	5
5	578,68	-598,92	1,79	11,46	2	38,47	5
6	275,95	-999,88	1,79	14,32	2	49,54	7
7	-14,88kN	-1412,74	1,77	22,11	3	60,30	8
8	-246,68	-1837,50	1,55	24,89	4	62,91	8
9	-419,63	-2274,44	1,46	27,34	4	69,10	9
10	2042,88	-989,67	1,79	34,47	5	49,26	7
10	456,58	-2723,42	1,79	11,46	2	97,12	13

1.16.4.1. Espaçamento máximo entre estribos (Smáx)

Para o espaçamento entre estribos, segue-se as seguintes premissas:

- Para $Vsd \leq 0.67Vrd2 Sm\acute{a}x \leq 0.6d \leq 30~cm$
- Para $Vsd > 0.67Vrd2 Sm\acute{a}x \le 0.3d \le 20 \ cm$

Com isso, tem-se que:

$$0,67Vrd2 = 0,67 * 4789,13$$

 $0,67Vrd2 = 3208,72 kN$

Sendo Vsd = 4067 kN, tem-se que:

Dessa forma,

$$Sm\acute{a}x \leq 0.3 * 165 \leq 20 \ cm$$

$$Sm\acute{a}x \le 49,5 \le 20 \ cm$$

Portanto, o espaçamento máximo entre os estribos é de 20 cm.

1.16.4.2. Espaçamento máximo entre ramos verticais (St)

Para o espaçamento entre ramos verticais, segue-se as seguintes premissas:

- Para $Vsd \le 0.20Vrd2$ $Stm\acute{a}x \le d \le 80$ cm
- Para Vsd > 0.20Vrd2 $Stm\acute{a}x \le 0.6d \le 35~cm$

Com isso, tem-se que:

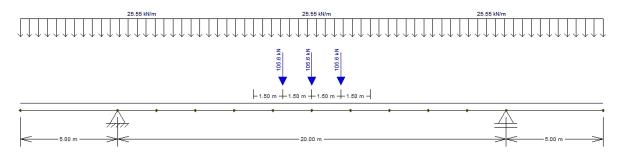
$$0,20Vrd2 = 0,20 * 4789,13$$

 $0,20Vrd2 = 957,83 kN$

Sendo Vsd = 4789,13kN, tem-se que:

Dessa forma,

$$Stm\acute{a}x \le 0.6 * 165 \le 35 \ cm$$


$Stm\acute{a}x \le 99 \le 35 cm$

Portanto, o espaçamento máximo entre os estribos é de 35 cm.

1.17. Momento na viga principal 2 devido ao carregamento móvel

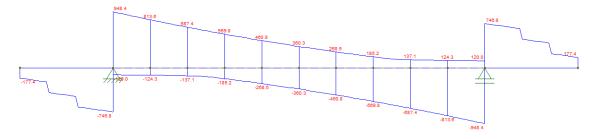
Para o cálculo dos momentos nas longarinas, com auxílio do *software* Ftool, tem-se o seguinte carregamento móvel apresentado na Figura 37.

Figura 37 - Carregamento móvel na Longarina 2

Para o cálculo dos momentos divide-se o comprimento da laje central com seções a cada 2m, totalizando em 11 seções. Com isso, tem-se que os momentos e os esforços cortantes em cada seção é:

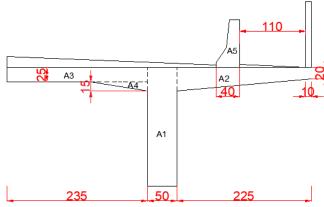
Tabela 14 - Momentos e esforços cortantes devido ao carregamento móvel na VP2

Seção	Mq+ (kNm)	Mq- (kNm)	Vq+ (kNm)	Vq- (kNm)
0	0,00	-2399,30	948,40	-746,80
1	1650,80	-2213,10	813,60	-124,30
2	2917,00	-2026,80	687,40	-137,10
3	3798,60	-1840,50	569,80	-185,20
4	4348,90	-1654,20	460,80	-268,50
5	4541,20	-1467,90	360,30	-360,30
6	4348,90	-1654,20	268,50	-460,80
7	3798,60	-1840,50	185,20	-569,80


8	2917,00	-2026,80	137,10	-687,40
9	1650,80	-2213,10	124,30	-120,00
10	0,00	-2399,30	746,80	-948,40

Abaixo serão apresentados os diagramas de momento e cortante tirados do software Ftoll.

Figura 38 - Diagrama de momento fletor para carregamento móvel na VP2


Figura 39 - Diagrama de esforço cortante para carregamento móvel na VP2

1.18. Carregamento permanente VP2

Para o carregamento permanente na longarina 2, tem-se a seguinte seção transversal observada na Figura 40.

Figura 40 - Seção transversal da superestrutura na Longarina 2

• Peso da longarina (A1)

$$A1 = 0.5 * 2 = 1.0 m^2$$

• Laje do balanço (A2)

$$A2 = \frac{(0,40+0,2)}{2} * 2,25 = 0,675 m^2$$

• Laje central (A3 e A4)

$$A3 = 0.25 * 2.35 = 0.588 m^2$$

$$A4 = \frac{1 * 0.15}{2} = 0.075 \, m^2$$

• Guarda rodas (A5)

$$A5 = \frac{(0,17+0,23)*0,4}{2} + \frac{(0,24+0,4)*0,26}{2}$$
$$A5 = 0,2419 m^2$$

Além disso, faz-se o peso próprio do pavimento da laje (Apav), da passarela de pedestres e do recapeamento.

$$Apav = \frac{(0.04 + 0.145) * 3.5}{2} = 0.3237 m^{2}$$

$$Apav = \frac{(0.04 + 0.058) * 1.1}{2} = 0.0539 m^{2}$$

$$grec = 2 * 3.5 = 7 kN/m$$

Dessa forma, faz-se uma combinação dos carregamentos permanentes.

$$g1 = (A1 + A2 + A3 + A4 + A5) * Ycon + (Apav * Ypav) + grec$$

$$g1 = (1,0 + 0,675 + 0,588 + 0,075 + 0,2419) * 25 + (0,3237 + 0,0539) * 24 + 7$$

$$g1 = 80,56 \, kN/m$$

1.18.1. Transversina

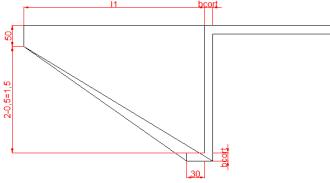
Para o cálculo do peso próprio das transversinas, primeiramente encontra-se o valor da altura e da base, calculadas a partir da altura da viga. Dessa forma, tem-se as seguintes premissas.

$$htrans \ge 75\%hvp$$

 $htrans \ge 0.75 * 2 = 1.5 m$

$$20 \le btrans \le 25$$

Dessa forma, adota-se um valor de 0,20 m para a base e 1,5 m para a altura da transversina. Com isso, encontra-se o a distância entre as transversinas, adotando o menor valor entre as premissas abaixo.


$$dtrans \le 2 * dvp = 2 * 5,2 = 10,4 m$$

 $dtrans = 10 m$

Assim sendo, a distância adotada entre as transversinas é de 10 m. Com isso, faz-se o cálculo dos carregamentos das transversinas entre apoios e no vão.

$$PTv = btrans * htrans * Ycon * \frac{lvão}{2}$$
 $PTv = 0.2 * 1.5 * 25 * \frac{4.7}{2}$
 $Ptv = 17.625 kN$
 $PTa = 0.2 * 1.5 * 25 * \frac{4.7}{2}$
 $Pta = 17.625 kN$

1.18.2. Elementos de cabeceira

Figura 41- Elementos de cabeceira

1.18.2.1. Ala

Como dados iniciais tem-se:

- bcort = 0.25 m
- hcort = 2 m
- l1 = 1.5 * (hcort 0.5) = 1.5 * (2.0 0.5) = 2.25 m

Dessa forma, tem-se que a área da ala é:

$$Aala = (0,5 * li) + (0,3 * (hvig - 0,5) + \frac{(l1 - 0,3) * (hvig - 0,5)}{2}$$

$$Aala = (0,5 * 2,25) + 0,3 * (2 - 0,5) + \frac{(2,25 - 0,3) * (2 - 0,5)}{2}$$

$$Aala = 3.04 m^{2}$$

Com isso, tem-se que o carregamento proveniente da Ala é:

$$Pala = Aala * e$$

$$Pala = 3.04 * 0.25 * 25 = 19.00 kN$$

1.18.2.2. Cortina

Para o cálculo da cortina, primeiramente encontra-se o comprimento total da transversina.

$$ltrans = 10,20 - 2 * 0,25 = 9,70 m$$

Dessa forma, tem-se que o carregamento proveniente da Cortina é:

$$Pcort = bcort * hcort * Ycon * \frac{ltrans}{2}$$

$$Pcort = 0.25 * 2 * 25 * \frac{10.2}{2}$$

$$Pcort = 63.75 \text{ kN}$$

1.18.2.3. Viga inferior (vigueta)

$$Pvi = l2 * bcort * Ycon * \frac{ltrans - 2 * bcort}{2}$$

$$Pvi = 0,3 * 0,25 * 25 * \frac{10,2 - 2 * 0,25}{2}$$

$$Pvi = 9.09 kN$$

1.18.2.4. Terra sobre a vigueta

$$Pterra = l2 * (hcort - bcort) * Yterra * \left(\frac{trans - bcort}{2}\right)$$

$$Pterra = 0,3 * (2 - 0,25) * Yterra * \left(\frac{9,7}{2}\right)$$

Onde, $\forall terra = 18 \, kN/m^3$. Dessa forma, tem-se que o carregamento proveniente da terra é:

$$Pterra = 0.3 * (2 - 0.25) * 18 * \left(\frac{9.7}{2}\right)$$

$$Pterra = 45.83 \ kN$$

1.18.2.5. Pavimentação

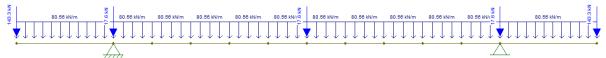
Inicialmente, tem-se que:

$$gpav + Rec = 24 * (0,3237 + 0,0539) + 9,7$$

 $gpav + Rec = 18,76 kN$

Dessa forma, tem-se que o carregamento proveniente da pavimentação é:

$$Ppav = 18,76 * 0,3 = 5,63 kN$$


Com isso, tem-se que o carregamento total dos elementos de cabeceira é:

$$Pcab = 19,00 + 63,75 + 9,09 + 45,83 + 5,63$$

 $Pcab = 143,30 \text{ kN}$

1.18.1. Cálculo dos momentos

Portanto, para o cálculo dos momentos na longarina 2, com auxílio do *software* Ftool, tem-se o seguinte carregamento permanente apresentado na Figura 42.

Figura 42 - Carregamento permanente Longarina 2

Para o cálculo dos momentos divide-se o comprimento da laje central com seções a cada 2 m, totalizando em 11 seções. Com isso, tem-se que os momentos e os cortantes em cada seção são apresentados na Tabela 15.

Tabela 15 - Momentos e cortantes devido ao carregamento permanente na VP2

Seção	Mg (kNm)	Vg (kN/m)
	1-00-	814,4
0	-1723,5	-546,1
1	-255,8	653,3
2	889,6	492,2
3	1712,8	331
4	2213,8	169,9
5		8,8
	2392,5	-8,8

6	2213,8	-169,9
7	1712,8	-331
8	889,6	-492,2
9	-255,8	-653,3
		546,1
10	-1723,5	-814,4

Abaixo serão apresentados os diagramas de momento e cortante tirados do software Ftoll.

Figura 43 - Diagrama de Momento Fletor na VP2

Figura 44 - Diagrama de Esforço Cortante na VP2

Com isso, faz-se a combinação dos momentos máximos e mínimos dos carregamentos móvel e permanente a fim de determinar a área de aço necessária devido aos momentos.

1.19. Armadura longitudinal da longarina 2

Dessa forma, adota-se o maior valor das seguintes premissas.

• Para Momento Máximo

$$Mm$$
á $x \ge \begin{cases} 1,4Mg + 1,4Mg^+ \\ 0,9Mg + 1,4Mg^+ \end{cases}$

• Para Momento mínimo

$$Mmin \ge \begin{cases} 1,4Mg + 1,4Mg^{-} \\ 0,9Mg + 1,4Mg^{-} \end{cases}$$

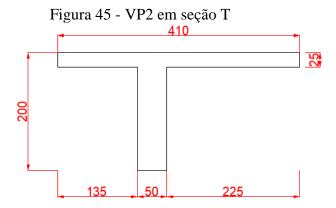

Dessa forma, com auxílio do *software* Excel, tem-se que aos momentos máximos e mínimos e os coeficientes de fadiga em cada seção é dada por meio da Tabela 16.

Tabela 16 - Momentos máximos e mínimos na VP2

Seção	Mmax (kNm)	Mmin (kNm)
0	-2412,90	-5771,92
1	2080,90	-3456,46
2	5329,24	-2036,88
3	7715,96	-178,78
4	9187,78	783,44
5	9707,18	1294,44
6	9187,78	783,44
7	7715,96	-178,78
8	5329,24	-2036,88
9	2080,90	-3456,46
10	-2412,90	-5771,92

1.19.1. Viga em seção T

Para transformar uma viga retangular em seção T, apenas espelhada se longarina 1. Portanto, seção da viga T para a longarina 2 é representada na Figura 45.

1.19.2. Cálculo linha neutra

Para exemplo, será demonstrado o cálculo para a seção de maior momento. Com isso, determina-se a posição da linha neutra (x) determinada pela Equação 24.

$$x = 1,25d * \left(1 - \sqrt{1 - \left(\frac{Md}{0,425 * Fcd * bf * d^2}\right)}\right)$$

Onde,

- d = hvig d' = 200 35 = 165 cm
- Fck = 35 MPa
- bf = 410 cm

Dessa forma, para a seção de maior momento, tem-se que.

$$x = 1,25 * 165 * \left(1 - \sqrt{1 - \left(\frac{9707,18 * 100}{0,425 * \frac{3,5}{1,4} * 410 * 165^2}\right)}\right)$$

$$x = 8.62 cm$$

Com isso, faz-se as seguintes verificações.

$$hf \ge 0.8 * 8.62$$

$$25 \ge 6.90$$

$$^{x}/_{d} \le 0.45$$

$$0,0522 \le 0,45$$

Dessa forma, a área de aço é dada por:

$$As = \frac{Md}{fyd(d - 0.4x)}$$

$$As = \frac{9707.18 * 100}{\frac{50}{1.15} * (165 - 0.4 * 8.62)}$$

$$As = 138,20 \ cm^2$$

Diante disso, na Tabela 17 é apresentado um resumo dos momentos máximos e mínimos, da área de aço e da quantidade de barras em cada seção.

Tabela 17 - Resumo área de aço e quantitativo de barras na VP2

Seção	Mmáx (kNm)	Mmín (kNm)	As+ (cm²)	As- (cm²)
0	-2412,90	-5771,92	33,81	90,65
1	2080,90	-3456,46	29,13	48,39
2	5329,24	-2036,88	75,14	28,72
3	7715,96	-178,78	109,36	2,53
4	9187,78	783,44	130,65	11,14
5	9707,18	1294,44	138,20	18,43
6	9187,78	783,44	130,65	11,14
7	7715,96	-178,78	109,36	2,53
8	5329,24	-2036,88	75,14	28,72

9	2080,90	-3456,46	29,13	48,39
10	-2412,90	-5771,92	33,81	80,87

1.19.3. Coeficiente de fadiga para os momentos fletores (k)

Para o cálculo da fadiga determina-se o momento fletor M1 e M2, sendo M1 o de maior valor e M2 o de menor valor em módulo, para cada seção e, com isso, calcula-se o coeficiente de fadiga (k), que possui as seguintes premissas.

• Se M1 e M2 tiverem o mesmo sinal:

$$k = \frac{M1 - M2}{M1} * \frac{5}{3.6}$$

• Se M1 e M2 tiverem sinais opostos:

$$k = \frac{|M1| + 0.5 * |M2|}{|M1|} * \frac{5}{3.6}$$

Sendo que obrigatoriamente $k \ge 1$. Dessa forma, tem-se a Tabela 18 com o resumo dos coeficientes de fadiga (k) para cada uma das seções.

Tabela 18 – Área de aço final considerando a fadiga na VP2

Seção	Mmax	Mmin	k	As,fad I (cm²)	Qtd. barras (\$\phi25\$)	As,fad S (cm ²)	Qtd. barras
0	-2412,90	-5771,92	1,00	33,81	7	90,65	19
1	2080,90	-3456,46	1,81	52,65	11	87,45	18
2	5329,24	-2036,88	1,65	124,31	26	47,51	10
3	7715,96	-178,78	1,40	153,65	32	3,56	1
4	9187,78	783,44	1,27	165,99	34	14,15	3
5	9707,18	1294,44	1,20	166,35	34	22,18	5

6	9187,78	783,44	1,27	165,99	34	14,15	3
7	7715,96	-178,78	1,40	153,65	32	3,56	1
8	5329,24	-2036,88	1,65	124,31	26	47,51	10
9	2080,90	-3456,46	1,81	52,65	11	87,45	18
10	-2412,90	-5771,92	1,00	33,81	7	80,87	17

1.19.4. Detalhamento da armadura

A fim de garantir que o concreto penetre com facilidade dentro da fôrma e envolva completamente as barras de aço das armaduras, a NBR 6118 estabelece os seguintes espaçamentos livres mínimos entre as faces das barras longitudinais.

• Direção horizontal (ah)

$$ahmin \ge \begin{cases} 2 cm \\ \phi l = 2.5 cm \\ 1,2d = 0.5 * 1.9 = 2.3 cm \end{cases}$$

Dessa forma, o espaçamento mínimo na direção horizontal é de 2,5 cm.

• Direção vertical (av)

$$avmin \ge \begin{cases} 2 cm \\ \phi l = 2.5 cm \\ 0.5d = 0.5 * 1.9 = 1 cm \end{cases}$$

Dessa forma, o espaçamento mínimo na direção vertical é de 2,5 cm.

1.20. Verificação do cortante

Dessa forma, adota-se o maior valor das seguintes premissas.

• Para Esforço Cortante Máximo

$$Vm\acute{a}x \ge \begin{cases} 1.4Vg + 1.4Vq^{+} \\ 0.9Vg + 1.4Vq^{+} \end{cases}$$

Para Momento mínimo

$$Vmin \ge \begin{cases} 1.4Vg + 1.4Vq^{-} \\ 0.9Vg + 1.4Vq^{-} \end{cases}$$

Dessa forma, com auxílio do *software* Excel, tem-se que aos momentos máximos e mínimos e os coeficientes de fadiga em cada seção é dada por meio da Tabela 19.

Tabela 19 - Esforço cortante máximo e mínimo na VP2

Seção	Vmáx (kN)	Vmín (kN)
,	2467,92	-312,56
0	835,37	-765,94
1	2053,66	413,95
2	1651,44	251,04
3	1261,12	38,62
4	882,98	-222,99
5	516,74	-496,50
5	496,50	-12,32
6	222,99	-882,98
7	-38,62	-1261,12
8	-251,04	-1651,44
9	-413,95	-1082,62
10	1811,46	-835,37
10	312,56	-1140,16

1.20.1. Cálculo da Área de Aço mínima para o cortante

Para o cálculo da área de aço mínima tem-se a seguinte equação:

$$As, min = \frac{20 * fctm}{100} * bw$$

$$As, min = \frac{20 * 0,321}{50} * 50$$

$$As, min = 6,42 cm^{2}$$

1.20.2. Modelo de cálculo I

$$Vsd \leq Vrd2$$

Sendo Vrd2 calculado por meio da Equação abaixo.

$$Vrd2 = 0.27 * \left(1 - \frac{fck}{250}\right) * fcd * bw * d$$

$$Vrd2 = 0.27 * \left(1 - \frac{35}{250}\right) * \frac{3.5}{1.4} * 50 * 165$$

$$Vrd2 = 4789.13 kN$$
(39)

Para a seção 0 tem-se que Vsd=2467,92kN. Portanto, o cortante está de acordo com a verificação. A Tabela 19 mostra a verificação para todas as seções.

Tabela 19 - Verificação esforço cortante para o Modelo 1 na VP1

Seção	Vsd (kN)	Vrd2 (kN)
	2467,92	4789,13
0	835,37	4789,13
1	2053,66	4789,13
2	1651,44	4789,13
3	1261,12	4789,13
4	882,98	4789,13
5	516,74	4789,13

5	496,50	4789,13
6	222,99	4789,13
7	-38,62	4789,13
8	-251,04	4789,13
9	-413,95	4789,13
	1811,46	4789,13
10	312,56	4789,13

1.20.2.1. Cálculo da armadura transversal para o Modelo de Cálculo I

Para calcular a armadura transversal devem ser determinadas as parcelas da força cortante que serão absorvidas pelos mecanismos complementares ao de treliça (Vc) e pela armadura (Vsw) de tal modo que:

$$Vsd = Vc + Vsw$$

Na flexão simples, a parcela Vc é determinada pela Equação abaixo

$$Vc = Vc0 = 0.6 * \frac{0.7 * 0.3\sqrt[3]{fck^2}}{10\sqrt[3]{c}} * bw * d$$

$$Vc = Vc0 = 0.6 * \frac{0.7 * 0.3\sqrt[3]{25^2}}{10 * 1.4} * 50 * 165$$

$$Vc = Vc0 = 794.47$$
(40)

Dessa forma, tem-se que a parcela da armadura para a seção 0 é:

$$Vsw = Vsd - Vc$$

 $Vsw = 2467,92 - 794,47$
 $Vsw = 1673,45 \ kN$

Com isso, a área de aço positiva ou negativa pelo Modelo de Cálculo I é dada pela Equação 27, mostrada anteriormente.

$$Asw += \frac{Vsw}{39,2d}$$

$$Asw += \frac{1673,45}{39,2 * 165} * 100$$

$$Asw += 25,87 cm^2/m$$

Dessa forma, nas Tabelas 20 e 21 serão apresentados quadros resumos dos cortantes máximos e mínimos e suas respectivas áreas de aço em cada seção, respeitando a área de aço mínima para o Modelo de Cálculo I.

Tabela 20 - Área de aço para o cortante máximo na VP2 para o Modelo de Cálculo I

Seção	Vsd+ (kN)	Vc0 (kN)	Vsw (kN)	Asw+ (cm²/m)
	2467,92	794,47	1673,45	25,87
0	835,37	794,47	40,90kN	6,42
1	2053,66	794,47	1259,19	19,47
2	1651,44	794,47	856,97	13,25
3	1261,12	794,47	466,65	7,21
4	882,98	794,47	88,51	6,42
_	516,74	794,47	-277,73	6,42
5	496,50	794,47	-297,97	6,42
6	222,99	794,47	-571,48	8,84
7	-38,62	794,47	-833,09	12,88
8	-251,04	794,47	-1045,51	16,16
9	-413,95	794,47	-1208,42	18,68

	1811,46	794,47	1016,99	15,72
10	312,56	794,47	-481,91k	7,45

Tabela 21 - Área de aço para cortante mínimo na VP2 para o Modelo de Cálculo I

Seção	Vsd- (kN)	Vc0 (kN)	Vsw (kN)	Asw- (cm²/m)
	-312,56	794,47	-1107,03	17,12
0	-765,94	794,47	-1560,41	24,13
1	413,95	794,47	-380,52	6,42
2	251,04	794,47	-543,43	8,40
3	38,62	794,47	-755,85	11,69
4	-222,99	794,47	-1017,46	15,73
	-496,50	794,47	-1290,97	19,96
5	-12,32	794,47	-806,79	12,47
6	-882,98	794,47	-1677,45	25,93
7	-1261,12	794,47	-2055,59	31,78
8	-1651,44	794,47	-2445,91	37,82
9	-1082,62	794,47	-1877,09	29,02
1.0	-835,37	794,47	-1629,84	25,20
10	-1140,16	794,47	-1934,63	29,91

1.20.3. Modelo de Cálculo II com $\theta = 30^{\circ}$

1.20.3.1. Verificação da compressão nas bielas

$$Vrd2 = 0.54 * \left(1 - \frac{fck}{250}\right) * fcd * bw * d * sen^2\theta(\cot \alpha + \cot \alpha\theta)$$
 (41)

Para estribos verticais, $\alpha = 90^{\circ}$. Portanto,

$$Vrd2 = 0.54 * \left(1 - \frac{35}{250}\right) * 3.5 * 50 * 165 * sen^2 30 (cotg 90 + cotg 30)$$

$$Vrd2 = 4142.59 \ kN$$

Para a seção 0 tem-se que Vsd=2467,92kN. Portanto, o cortante está de acordo com a verificação. A Tabela 22 mostra a verificação para todas as seções.

Tabela 22 - Verificação esforço cortante para o Modelo de Cálculo II na VP2

Seção	Vsd (kN)	Vrd2 (kN)	
	2467,92	4142,59	
0	835,37	4142,59	
1	2053,66	4142,59	
2	1651,44	4142,59	
3	1261,12	4142,59	
4	882,98	4142,59	
5	516,74	4142,59	
5	496,50	4142,59	
6	222,99	4142,59	
7	-38,62	4142,59	
8	-251,04	4142,59	

9	-413,95	4142,59
10	1811,46	4142,59
10	312,56	4142,59

1.20.3.2. Cálculo da armadura transversal para o Modelo de Cálculo II

Para calcular a armadura deve-se determinar as parcelas da força cortante solicitante que serão absorvidas pelos mecanismos complementares ao de treliça (Vc) e pela armadura (Vsw), de tal modo que:

$$Vsd = Vc + Vws$$

Na flexão simples, a parcela Vc é igual a Vc1. Para isso, deve-se determinar a força Vc0, contudo, essa parcela é igual à determinada no Modelo de Cálculo I, ou seja, Vc0 não depende do modelo de cálculo utilizado.

A força Vc1 apresenta uma relação inversa com a solicitação de cálculo Vsd. Como Vsd é maior que Vc0, a parcela Vc1 é calculada conforme a Equação 30, exemplificada pela seção 0.

$$Vc = Vc1 = Vc0 * \frac{Vrd2 - Vsd}{Vrd2 - Vc0}$$
 $Vc1 = 794,47 * \frac{4142,59 - 2467,92}{4142,59 - 794,47}$
 $Vc1 = 397,38 \, kN$

Dessa forma, tem-se que a parcela da armadura para a seção 0 é:

$$Vsw = Vsd - Vc1$$

 $Vsw = 2467,92 - 397,38$
 $Vsw = 2070,54 \, kN$

Com isso, a área de aço positiva ou negativa pelo Modelo de Cálculo II é dada pela Equação 27.

$$Asw+=\frac{Vsw}{0,9d*fyw(cotg\alpha+cotg\theta)*sen\alpha}$$

$$Asw+=\frac{2070,54}{0,9*165*\frac{50}{1,15}(cotg90+cotg30)*sen90}$$

$$Asw+=18,54~cm^2/m$$

Dessa forma, nas Tabelas 23 e 24 serão apresentados quadros resumos dos cortantes máximos e mínimos e suas respectivas áreas de aço em cada seção, respeitando a área de aço mínima para o Modelo de Cálculo II.

Tabela 23 - Área de aço para o cortante máximo na VP2 para o Modelo de Cálculo II

Seção	Vsd+ (kN)	Vc1 (kN)	Vsw (kN)	Asw+ (cm²/m)
	2467,92	397,38	2070,54	18,54
0	835,37	784,76	50,61	6,42
1	2053,66	495,68	1557,98	13,95
2	1651,44	591,12	1060,32	9,49
3	1261,12	683,73	577,39	6,42
4	882,98	773,46	109,52	6,42
	516,74	860,37	-343,63	6,42
5	496,50	865,17	-368,67	6,42
6	222,99	930,07	-707,08	6,42
7	-38,62	992,15	-1030,77	9,23
8	-251,04	1042,55	-1293,59	11,58

9	-413,95	1081,21	-1495,16	13,39
10	1811,46	553,15 1258,31		11,27
	312,56	908,82	-596,26	6,42

Tabela 24 - Área de aço para o cortante mínimo na VP2 para o Modelo de Cálculo II

Seção	Vsd- (kN)	Vc1 (kN) Vsw (kN)		Asw- (cm²/m)
	-312,56	1057,15	-1369,71	12,26
0	-765,94	1164,73	-1930,67	17,28
1	413,95	884,76	-470,81	6,42
2	251,04 923,41		-672,37	6,42
3	38,62	973,82	-935,20	8,37
4	-222,99	1035,89	-1258,88	11,27
	-496,50	1100,79	-1597,29	14,30
5	-12,32	985,91	-998,23	8,94
6	-882,98	1192,50	-2075,48	18,58
7	-1261,12	1282,23	-2543,35	22,77
8	8 -1651,44 13		-3026,29	27,09
9	9 -1082,62		-2322,49	20,79
	-835,37	1181,20	-2016,57	18,05
10	-1140,16	1253,53	-2393,69	21,43

1.20.4. Coeficiente de fadiga para o cortante (k)

Para o cálculo da fadiga determina-se para o esforço cortante V1 e V2, sendo V1 o de maior valor e V2 o de menor valor em módulo, para cada seção e, com isso, calcula-se o coeficiente de fadiga (k), que possui as seguintes premissas.

• Se V1 e V2 tiverem o mesmo sinal:

$$k = \frac{V1 - V2}{V1} * \frac{5}{2,8}$$

• Se V1 e V2 tiverem sinais opostos:

$$k = \frac{5}{2.8}$$

Sendo que obrigatoriamente $k \ge 1$. Dessa forma, tem-se a Tabela 25 com o resumo dos coeficientes de fadiga (k), área de aço final e quantidade de barras necessárias para cada uma das seções.

Tabela 25 - Resumo da área de aço final considerando a fadiga na VP2

Seção	Vmax (kN)	Vmin (kN)	k	As,fad I (cm²)	Qtd. de barras (\$25)	As,fad S (cm ²)	Qtd. de barras (\$\phi25)
	2467,92	-312,56	1,79	46,20	6	30,56	4
0	835,37	-765,94	1,79	11,46	2	43,08	6
1	2053,66	413,95	1,43	27,76	4	9,15	2
2	1651,44	251,04	1,51	20,06	3	12,72	2
3	1261,12	38,62	1,73	12,49	2	20,23	3
4	882,98	-222,99	1,79	11,46	2	28,09	4
5	516,74	-496,50	1,79	11,46	2	35,64	5

	496,50	-12,32	1,79	11,46	2	22,27	3
6	222,99	-882,98	1,79	15,78	2	46,31	6
7	-38,62	-1261,12	1,73	22,30	3	55,01	7
8	-251,04	-1651,44	1,51	24,48	4	57,26	8
9	-413,95	-1082,62	1,10	20,61	3	32,01	4
10	1811,46	-835,37	1,79	28,08	4	45,00	6
	312,56	-1140,16	1,79	13,30	2	53,41	7

1.21. Decalagem e ancoragem

1.21.1. Decalagem

Para a decalagem, tem-se a Equação a seguir.

$$dl = 0.75 * d$$
 (42)
 $dl = 0.75 * 165$
 $dl = 123.75 cm$

1.21.2. Comprimento de ancoragem

Para o comprimento de ancoragem tem-se a Equação abaixo.

$$lb = \frac{\phi}{4} * \frac{Fyd}{Fhd} \tag{43}$$

Onde, Fbd é dada pela Equação seguinte.

$$Fbd = \eta 1 * \eta 2 * \eta 3 * Fctd$$

$$Fbd = 2,25 * 1 * 1 * \frac{0,21}{1,4} * \sqrt[3]{35^2}$$
(44)

$$Fbd = 0.36$$

Portanto, o comprimento de ancoragem é:

$$lb = \frac{2.5}{4} * \frac{50}{1.15 * 0.36}$$

$$lb = 75,20cm$$

Com isso, determina-se um comprimento de ancoragem mínimo.

$$lbmin \ge \begin{cases} I = 0.3lb = 22.6 \ cm \\ II = 10\phi = 25 \ cm \\ III = 10 \ cm \end{cases}$$

Portanto o lbmin = 25 cm.

Para os cálculos de lbnec, adota-se:

- $\alpha = 1$ (barra sem gancho)
- lb = 75,20 cm

Dessa forma, determina-se o comprimento de ancoragem positiva necessário por meio da Equação 35.

$$lbnec = \alpha * lb * \frac{As^{+} cal}{As \ ef}$$
 (45)

$$lbnec = 1 * 75,20 * \frac{190,90}{191,49}$$

$$lbnec = 75 > lbmín$$

Dessa forma, determina-se o comprimento de ancoragem negativa necessário por meio da Equação 35.

$$lbnec = \alpha * lb * \frac{As^{-} cal}{As ef}$$
 (46)

$$lbnec = 1 * 75,20 * \frac{109,77}{112,93}$$

$$lbnec = 73.10 > lbmín$$

Quando há a necessidade de fazer o gancho, o valor de $\alpha=0.7$. Dessa forma, para a As^- , temos que o comprimento de ancoragem necessário é:

$$lbnec = \alpha * lb * \frac{As^{-} cal}{As \ ef}$$
 (47)

$$lbnec = 0.7 * 75,20 * \frac{109,77}{112,93}$$

$$lbnec = 51,20 > lbmín$$

1.21.3. Emendas

Para barras tracionadas tem-se a seguinte premissa:

$$l_{0t} = \alpha * lbnec \ge l_{0t}min$$

 $l_{0t} = 1.4 * 75 \ge l_{0t}min$
 $l_{0t} = 105 \ cm$

Para barras comprimidas tem-se que:

$$l_{0t} = lbnec \ge l_{0t}min$$

 $l_{0t} = 73,10 cm$

1.21.4. Armadura de pele

$$Aspele = 0.05\% * bw * h$$

$$Aspele = \frac{0.05}{100} * 50 * 200$$

$$Aspele = 5 cm^{2}$$

1.22. Cálculo da transversina de vão

Como determinado anteriormente, tem-se que as dimensões da transversina é de 20x130 cm. Com isso, seu peso é determinado por:

$$q1 = bt * ht * \forall c$$

$$g1 = 0.2 * 1.3 * 25 = 6.5 kN/m$$

Além disso, tem-se que o carregamento da laje (peso próprio + pavimento) é:

$$g = \left(\frac{0.2 + 0.25}{2}\right) * 25 + 24 * \left(\frac{0.04 + 0.16}{2}\right)$$
$$g = 5.63 + 2.4 = 8.03 \, kN/m^2$$
$$g2 = 8.03 * 5.2 = 41.76 \, kN/m$$

Portanto, o peso próprio total é:

$$gt = g1 + 2 * g2$$

 $gt = 6.5 + 2 * 41.76 = 90.02 \text{ kN/m}$

Diante disso, considerando como bi apoiada tem-se que as reações de apoio e o momento causados pelo peso próprio da transversina são:

$$Q0 = R0 = 5.2 * \frac{90.02}{2} = 234.05 \, kN$$

$$M1 = 90,02 * \frac{5,2^2}{8} = 304,27 \ kNm$$

Com isso, faz-se uma combinação dos momentos causados pelo peso próprio e carregamento móvel. Contudo, a favor da segurança não será adicionado a parcela de carregamento móvel na transversina. Dessa forma, tem-se que:

$$Md = 1.4 * M1$$

$$Md = 1.4 * 304.27 = 425.98 \, kN$$

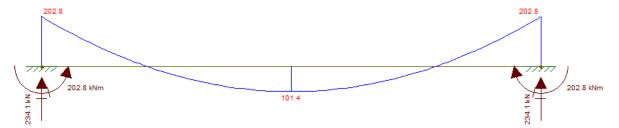
Dados da seção retangular utilizada:

- bt = 20 cm
- ht = 130 cm

Com isso, para o cálculo da área de aço primeiramente faz-se o cálculo a linha neutra:

$$x = 1,25d * \left(1 - \sqrt{1 - \left(\frac{Md}{0,425 * Fcd * bw * d^2}\right)}\right)$$

$$x = 1,25 * 127 * \left(1 - \sqrt{1 - \left(\frac{425,98 * 100}{0,425 * \frac{3,5}{1,4} * 20 * 127^2}\right)}\right)$$
$$x = 10,19 cm$$


Dessa forma, a área de aço é da transversina é:

$$As = \frac{425,97 * 100}{\frac{50}{1.15}(127 - 0.4 * 10,19)} = 7,97 \text{ cm}^2$$

Portanto, serão necessárias 5 barras de \$16 mm.

Além disso, para determinar uma área de aço negativa, a favor da segurança no momento da execução do projeto, tem-se que o momento máximo negativo com sua reação de apoio são:

Figura 46 - Momento máximo negativo na transversina de vão

Dessa forma, tem-se que a linha neutra é:

$$x = 1,25 * 127 * \left(1 - \sqrt{1 - \left(\frac{-202,8 * 1,4 * 100}{0,425 * \frac{3,5}{1,4} * 20 * 127^2}\right)}\right) = 6,72 cm$$

Com isso a área de aço negativa é:

$$As = \frac{-202,80 * 1,4 * 100}{\frac{50}{1,15}(165 - 0,4 * 0,37)} = 5,25 cm^{2}$$

Portanto, serão consideradas 3 barras de \$\phi16\$ mm para armadura negativa na transversina de vão.

1.23. Cálculo da transversina de apoio

Como determinado anteriormente, tem-se que as dimensões da transversina é de 20x130 cm. Com isso, seu peso é determinado por:

$$g1 = bt * ht * \cong c$$

 $g1 = 0.2 * 1.3 * 25 = 6.5 kN/m$

Além disso, tem-se que o carregamento da laje (peso próprio + pavimento) é:

$$g = \left(\frac{0.2 + 0.25}{2}\right) * 25 + 24 * \left(\frac{0.04 + 0.16}{2}\right)$$
$$g = 5.63 + 2.4 = 8.03 \, kN/m^2$$
$$g2 = \frac{8.03 * 5.2}{2} = 20.88 \, kN/m$$

Portanto, o peso próprio total é:

$$gt = g1 + 2 * g2$$

 $gt = 6.5 + 2 * 20.88 = 48.26 \text{ kN/m}$

Diante disso, tem-se que as reações de apoio e o momento causados pelo peso próprio da transversina é:

$$Q0 = R0 = 5.2 * \frac{48,26}{2} = 125,47 \ kN$$

$$M1 = 48,26 * \frac{5,2^2}{8} = 163,12 \, kNm$$

Com isso, faz-se uma combinação dos momentos causados pelo peso próprio e carregamento móvel. Contudo, a favor da segurança não será adicionado a parcela de carregamento móvel na transversina. Dessa forma, tem-se que:

$$Md = 1.4 * M1$$

$$Md = 1.4 * 163.12 = 228.37 \, kN$$

Dados da seção T utilizada:

•
$$bt = 20 cm$$

•
$$ht = 130 cm$$

Com isso, para o cálculo da área de aço primeiramente faz-se o cálculo a linha neutra:

$$x = 1,25d * \left(1 - \sqrt{1 - \left(\frac{Md}{0,425 * Fcd * bf * d^2}\right)}\right)$$

$$x = 1,25 * 127 * \left(1 - \sqrt{1 - \left(\frac{228,37 * 100}{0,425 * \frac{3,5}{1,4} * 20 * 127^2}\right)}\right)$$

$$x = 5,38 cm$$

Dessa forma, a área de aço é da transversina é:

$$As = \frac{228,37 * 100}{\frac{50}{1.15} * (127 - 0.4 * 5.38)} = 4.21 cm^{2}$$

Contudo, uma vez que a área de aço não atingiu a área de aço mínima tem-se que a área de aço negativa será a mínima, dada por:

$$As, min = \rho min * Ac$$

$$As, min = \frac{0.164}{100} * (20 * 130)$$

$$As, min = 4.26 cm^2$$

Portanto, serão consideradas 3 barras de φ16 mm para armadura negativa na transversina de vão.

Além disso, para determinar uma área de aço negativa, a favor da segurança no momento da execução do projeto, tem-se que o momento máximo negativo com sua reação de apoio são:

108.7 108.7 kNm 108.7 kNm 54.4

Figura 47 - Momento máximo negativo na transversina de apoio

Dessa forma, tem-se que a linha neutra é:

$$x = 1,25 * 127 * \left(1 - \sqrt{1 - \left(\frac{-108,70 * 100}{0,425 * \frac{3,5}{1,4} * 20 * 127^2}\right)}\right) = 2,54 cm$$

Com isso a área de aço negativa é:

$$As = \frac{-108,70 * 100}{\frac{50}{1,15}(127 - 0,4 * 2,54)} = 1,98 cm^{2}$$

Contudo, uma vez que a área de aço não atingiu a área de aço mínima tem-se que a área de aço negativa será a mínima, dada por:

$$As, min = \rho min * Ac$$
 $As, min = \frac{0,164}{100} * (20 * 130)$
 $As, min = 4,26 cm^2$

Portanto, serão consideradas 3 barras de \$\phi16\$ mm para armadura negativa na transversina de apoio.

1.24. Reações de apoio devido à carga móvel na longarina

Para a determinação das reações de apoio devido a carga móvel na longarina, faz-se a linha de influencia considerando o apoio 0. Dessa forma, a linha de influencia é apresentada na Figura 36 abaixo.

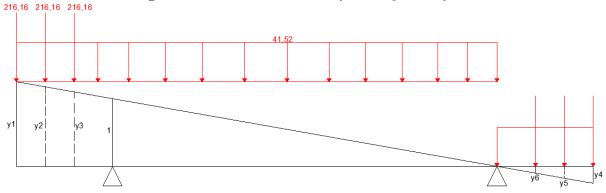


Figura 48 - Linha de Influência para reação de apoio

Com isso, determina-se os valores de y1, y2, y3, y4, y5 e y6.

$$\frac{y1}{25} = \frac{1}{20}$$
 $\frac{y2}{23,5} = \frac{1}{20}$ $\frac{y3}{22} = \frac{1}{20}$ $y1 = 1,25$ $y2 = 1,175$ $y3 = 1,1$

$$\frac{y4}{5} = \frac{1}{20}$$
 $\frac{y5}{3,5} = \frac{1}{20}$ $\frac{y6}{2} = \frac{1}{20}$ $y4 = 0.25$ $y5 = 0.175$ $y6 = 0.1$

Com isso, tem-se que R0⁺ é dado pela Equação.

$$R0^{+} = A * p + P * y1 + P * y2 + P * y3$$

$$R0^{+} = \left(\frac{25 * 1,25}{2}\right) * 41,52 + 216,16 * (1,25 + 1,175 + 1,1)$$

$$R0^{+} = 1410.71 \text{ kNm}$$

$$(48)$$

Para R0⁻ tem-se a Equação abaixo.

$$R0^{-} = A * p + P * y4 + P * y5 + P * y6$$

$$R0^{-} = \left(\frac{5 * 0.25}{2}\right) * 41.52 + 216.16 * (0.25 + 0.175 + 0.1)$$

$$R0^{-} = -139.43 \text{ kNm}.$$
(49)

Dessa forma, tem-se a seguinte Tabela 26 que apresenta o resumo das reações de apoio

Tabela 26 - Reações de apoio

Apoio	R0 ⁺	R0 ⁻	Rg
0	1410,71	-139,43	1461,10
1	1410,71	-139,43	1461,10

Diante disso, faz-se a combinação das reações para determinar as reações máximas e mínimas de cada apoio por meio das premissas dadas pelas Equações 34 e 35, respectivamente.

$$Rm\acute{a}x \ge \begin{cases} 1.4Rg + 1.4Rq^{+} \\ 0.9Rg + 1.4Rq^{+} \end{cases}$$

$$Rmin \ge \begin{cases} 1,4Rg + 1,4Rq^{-} \\ 0,9Rg + 1,4Rq^{-} \end{cases}$$

Portanto, temos que as reações máximas e mínimas para cada apoio é dada pela seguinte Tabela 27.

Tabela 27 - Resumo reações de apoio máximos e mínimos

Apoio	R0 ⁺	R0 ⁻	Rg	Rmáx	Rmín
0	1410,71	-139,43	1461,10	4020,53	1850,34
1	1410,71	-139,43	1461,10	4020,53	1850,34

2. MESOESTRUTURA

2.1. Frenagem e aceleração

Os esforços longitudinais de frenagem e aceleração obedecem à formula fundamental da dinâmica, sendo as Equações 50 e 51. Com isso, será considerado para os cálculos o maior valor entre eles.

$$Ffrenagem = 30\% * Qve\'{i}culo$$

$$Ffrenagem = 0.3 * 450 = 135 kN$$
(50)

$$Faceleração = 5\% * Qmultidão$$
 (51)

Onde,

$$Qmultid\tilde{a}o = q * Llong(total) * Lpista(trans)$$

$$Qmultid\tilde{a}o = 5 * 30 * (10,2 - 2 * 0,4) = 1410 \ kN$$

Portanto,

$$Facelera$$
ção = 0,05 * 1410 = 70,50 kN

A carga do vento sobre a ponte, considerada agindo horizontalmente em direção normal ao seu eixo, é representada por uma pressão horizontal média, dada para:

• Ponte descarregada: 1,5 kN/m²

• Ponte carregada: 1,0 kN/m²

• Pedestre: 0,7 kN/m²

2.1.1. Ponte descarregada

$$Fvento(tr) = Aobs(tr) * 1,5$$
 (52)

Onde,

$$Aobs(tr) = (hviga + hgr) * Ltotal$$
$$Aobs(tr) = (2,0 + 0,86) * 30$$
$$Aobs(tr) = 85,80 m^{2}$$

Dessa forma, tem-se que a carga do vento para a ponte descarregada é.

$$Fvento(tr) = 85,80 * 1,5$$

$$Fvento(tr) = 128,70 kN$$

2.1.2. Ponte carregada

Para a ponte carregada, deve-se seguir a seguinte premissa determinada pela normativa.

• Altura do trem-tipo: 2 metros.

Dessa forma, tem-se que:

$$Abos(tr) = (hviga + hpav + hvei) * Ltotal$$

$$Abos(tr) = \left(2 + \left(\frac{0.04 + 0.163}{2}\right) + 2\right) * 30$$

$$Abos(tr) = 123.05 m^{2}$$

Portanto, tem-se que a carga do vento para a ponte carregada é:

$$Fvento(tr) = 123,05 * 1,0$$

 $Fvento(tr) = 123,05 kN$

2.1.3. Passarela de pedestre

Para a ponte carregada, deve-se seguir a seguinte premissa determinada pela normativa.

• Altura média de um pedestre: 1,70 metros.

Dessa forma, tem-se que:

$$Abos(tr) = (hviga + hpav + hped) * Ltotal$$

$$Abos(tr) = \left(2 + \left(\frac{0,04 + 0,058}{2}\right) + 1,70\right) * 30$$

$$Abos(tr) = 112,47 m^{2}$$

Com isso, tem-se que a carga do vento para a passarela de pedestre é:

$$Fvento(tr) = 112,47 * 0,7$$
$$Fvento(tr) = 78,73 kN$$

Portanto, a força do vento considerada é de 128,70 kN.

2.2. Força do vento no sentido longitudinal

Para pontes com lajes e vigas com até 38 metros de vão, a norma AASHTO permite a simplificação do cálculo das solicitações de vento, seguindo as seguintes premissas.

• Componente transversal = total (100%);

 Componente longitudinal – 25% do vento na superestrutura e 40% na carga móvel.

2.2.1. Ponte descarregada

$$Fvl = 25\% * Fvt$$

 $Fvl = 0.25 * 128.70$
 $Fvl = 32.18 kN$

2.2.2. Ponte carregada

Para carga móvel

$$Fvl(m\'ovel) = 0.4 * 2 * 30 * 1$$
$$Fvl(m\'ovel) = 24 kN$$

• Para superestrutura

$$Fvl(super) = 0.25 * \left(\frac{0.04 + 0.163}{2} + 2\right) * 30 * 1$$
$$Fvl(super) = 15.76 kN$$

Com isso, a força do vento longitudinal para a ponte carregada é:

$$Fvl(total) = 24 + 15,76$$
$$Fvl(total) = 39,76 kN$$

Portanto, a força de vento longitudinal a ser considerada é de 39,76 kN.

2.3. Cargas na mesoestrutura

Tem-se os seguintes dados para o cálculo das cargas na mesoestrutura:

- Frenagem e aceleração = 135 kN;
- Carga de vento horizontal = 128,70 kN;
- Carga de vento longitudinal = 39,76 kN

2.3.1. Empuxo de terra

Para o empuxo de terra tem-se a Equação.

$$Fedt = \frac{Y * Ka * hv^{2}}{2} * Ltrans$$

$$Fedt = \frac{18 * 2^{2}}{3 * 2} * 10,20$$

$$Fedt = 122.4 kN$$
(53)

2.3.2. Sobrecarga no aterro de acesso

Para a sobrecarga no aterro de acesso, deve-se considerar duas situações, uma que apenas atua a carga de multidão e outra com veículo e multidão.

Para situação 1 (apenas carga de multidão)

$$ESCA = ka * q * hv * Ltrans$$

$$ESCA = \frac{1}{3} * 5 * 2 * 10,20$$

$$ESCA = 34 kN$$

• Para situação 2 (veículo + multidão)

$$q = \frac{q1 * 3 + q2 * (Ltrans - 3)}{Ltr}$$

Onde,

$$q1 = {450 \choose 3,6} = 25 \, kN/m^2$$

$$q2 = 5 \, kN/m^2$$

Dessa forma, tem-se que:

$$q = \frac{25 * 3 + 5 * (10,20 - 3)}{10,20}$$
$$q = 10,88 \, kN/m^2$$

Portanto,

$$ESCA = \frac{1}{3} * 10,88 * 2 * 10,20$$

$$ESCA = 74,00 \ kN$$

2.4. Forças na superestrutura em situação de tráfego

2.4.1. Longitudinal

- Aceleração = 135 kN;
- Vento = 39,76 kN;
- Sobrecarga no aterro = 74,00 kN.

Com isso, faz-se um somatório das cargas para a definição das forças na longitudinal.

$$\Sigma = 248.76 \, kN$$

2.4.2. Transversal

• Vento = 128,70 kN

2.5. Forças na superestrutura na execução

2.5.1. Longitudinal

- Vento com a ponte descarregada = 32,18 kN;
- Empuxo diferencial = 122,40 kN;
- Sobrecarga no aterro = 74,00 kN.

Com isso, faz-se um somatório das cargas para a definição das forças na longitudinal.

$$\Sigma = 228,58 \, kN$$

2.5.2. Transversal

• Vento = 128,70 kN

2.6. Cálculo dos aparelhos de apoio

Como apoio será utilizado Neoprene Fretado com 4 lâminas de 4 mm, de dimensões 50x60 cm, conforme Tabela 3 em Manual BS EM 1337-3.

Com isso, tem-se que a área do Neoprene é dada pela Equação.

$$AN = (a - 0,006) * (b - 0,006)$$

$$AN = (0,5 - 0,006) * (0,6 - 0,006)$$

$$AN = 0,293 m^{2}$$
(54)

Além disso, calcula-se a rigidez do Neoprene (KN), dada pela Equação abaixo, e a inércia do pilar (Ip), Equação 56.

$$KN = \frac{G * AN}{n * hn} \tag{55}$$

$$KN = \frac{0.9 * 10^3 * 0.294}{4 * 0.004}$$

$$KN = 16537,5 \, kN/m$$

Onde, G é o módulo de elasticidade transversal do Neoprene.

Com isso, calcula-se a Inércia do pilar, dada pela Equação 56.

$$Ip = \frac{\pi * \emptyset P^4}{64} \tag{56}$$

$$Ip = \frac{\pi * 1^4}{64}$$

$$Ip = 0.049 m^4$$

Dessa forma, calcula-se a rigidez do pilar (Kp), dada pela Equação abaixo.

$$Kp = \frac{3 * \varepsilon * Ip}{Lp^3} \tag{57}$$

$$Kp = \frac{3 * 2,1 * 10^4 * 10^3 * 0,049}{6.89^3}$$

$$Kp = 9437,98 \, kN/m$$

Com isso, faz-se a redução da rigidez do pilar, a fim de evitar que os esforços se concentrem em grande escala no pilar, por meio da Equação.

$$Kpn = \frac{KN * Kp}{KN + Kp} \tag{58}$$

$$Kpn = \frac{16537,5 * 9437,98}{16537.5 + 9437.98}$$

$$Kpn = 6008,77 \ kN/m$$

Adotando os dois eixos iguais, onde HL = 248,76 kN, tem-se a Equação abaixo:

$$HLi = \frac{Kpn * HL}{Kest} \tag{59}$$

$$HLi = \frac{2 * 6008,77 * 248,76}{2 * (6008,77 + 6008,77)}$$

$$HLi = 124.39 kN$$

Dessa forma, para os dois apoios tem-se a seguinte Tabela 28.

Tabela 28 - Resultado das forças na longitudinal

Eixo	Ki (kN/m)	HLi (kN)
0	6008,77	124,39
1	6008,77	124,39
	$\Sigma = 12017,54$	

2.7. Distribuição das forças transversais na mesoestrutura

Para as forças transversais, utiliza-se do mesmo cálculo de rigidez para as forças longitudinais. Portanto, segue a Tabela 29 como resumo para $Ht = 128,70 \ kN$.

Eixo	Ki	ki	xi	kixi
0	6008,77	0,5	-10	-5
1	6008,77	0,5	10	5
$\Sigma =$	12017,54	1	0	0

As forças transversais são aplicadas no centro de gravidade da ponte, sendo, neste caso, o centro geométrico, como representado na Figura 47.

Figura 49 - Centro de gravidade da ponte

Para isso, tem-se que a rigidez relativa é dada pela Equação.

$$ki = \frac{Ki}{\Sigma Kj} \tag{60}$$

Onde, $\Sigma Kj = 12017,54 \, kN/m$.

Dessa forma, pela Lei Construtiva, tem-se que a força horizontal do eixo é dada pela Equação.

$$Hti = ki * Ht * \frac{e * \overline{x}i}{\Sigma(ki * xi^2) - xg}$$
(61)

Onde,

- e = 45 kg = 45;
- $\bar{x}i = 0$;
- $xg = \Sigma ki * xi = 0;$
- $Ht = 128,70 \, kN$.

Com isso, tem-se que:

$$Hti = ki * Ht$$
 $Ht0 = Ht1 = 0.5 * 128,70$
 $Ht0 = Ht1 = 64,35 kN$

2.8. Forças devido as deformações internas

Para cálculo, supõe-se que as variações de temperatura ocorram de modo uniforme. Dessa forma, segundo a NBR 6118 tem-se as seguintes premissas:

- Retração: $\varepsilon r = 15 * 10^{-5}$
- $\varepsilon temp = 15 * 10^{-5}$
- $\varepsilon = -(15 * 10^{-5} + 15 * 10^{-5}) = -30 * 10^{-5}$
- Variação de temperatura: $\Delta T = 15 \,{}^{\circ}C$
- $\alpha = 10^{-5} / {}^{\circ}C$

Com isso, para a variação de temperatura temos a seguinte equação:

$$Htemp = (\varepsilon r + \varepsilon t) * \overline{x}\imath * Ki$$

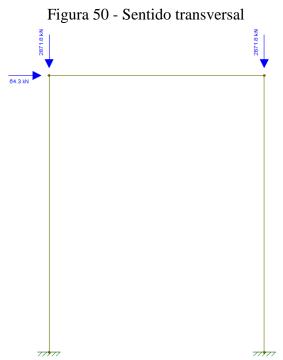
$$Htemp = (15 * 10^{-5} + 15 * 10^{-5}) * (10) * 6008,77$$

$$Htemp = 18,03$$
(62)

Dessa forma, temos a Tabela 29 que representa o resultado das forças internas devido a variação de temperatura.

Tabela 29 - Resultado das forças internas devido a variação de temperatura

Eixo	Ki	$\overline{x}i$	Htemp
0	6008,77	-10	-18,03
1	6008,77	10	18,03


Com isso, tem-se os esforços finais nos pilares, apresentado na Tabela 30.

		Longitudinal				
Eixo	Transversal	Superestrutura (por eixo)	Deformação interna	Total		
0	64,35	124,38/2	-18,03	44,16		
1	64,35	124,38/2	18,03	80,22		

Tabela 30 - Esforços finais nos pilares

2.9. Armadura do pilar

Para o cálculo da armadura transversal do pilar é necessário fazer uma análise no sentido transversal e longitudinal.

Com o auxílio do Ftool, encontra-se os momentos máximos e as reações de apoio para essa seção, representada na Figura 51.

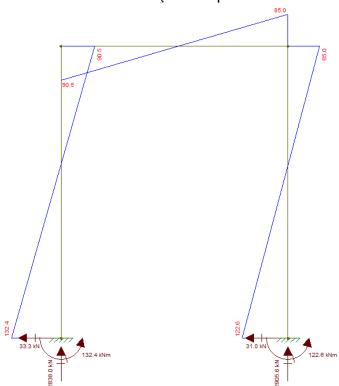


Figura 51 - Momentos máximos e reações de apoio na transversal

(a) Pilar 0 (b) Pilar 1

Figura 52 - Seção longitudinal

Com o auxílio do Ftool, encontra-se os momentos máximos e as reações de apoio para essa seção, representada na Figura 53.

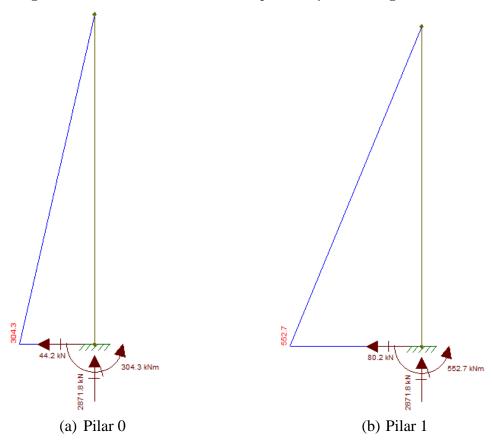
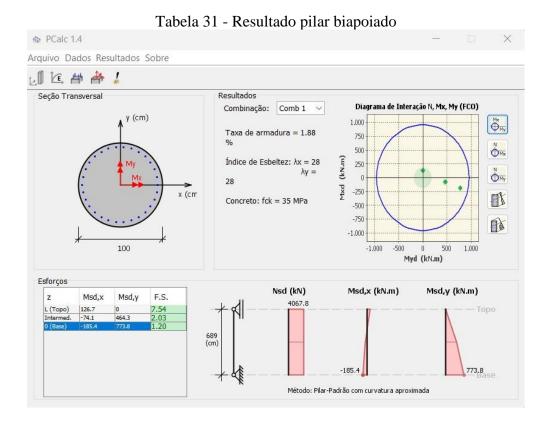
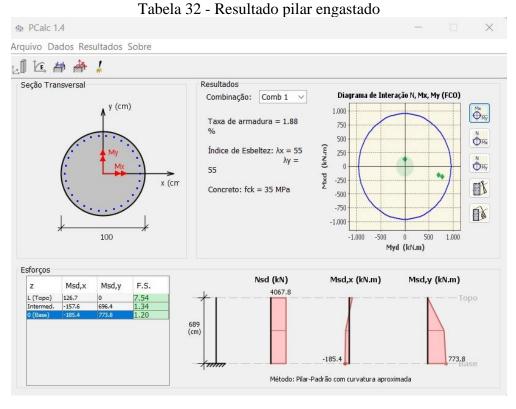
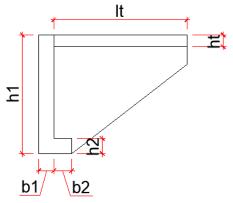




Figura 53 - Momentos máximos e reações de apoio na longitudinal

Diante disso, para determinar a armadura considerou-se as duas formas de cálculo, contudo a resultante de ambas foi a mesma quantidade de aço, ou seja, nesse caso o tipo do apoio não interferiu no resultado final. Com isso, sabendo que a altura do pilar é de 6,89 metros, utilizando como auxílio o *software PCalc* para o cálculo dos esforços tem-se que serão necessárias 30 barras de φ25mm.



3. CÁLCULO ELEMENTOS DE CABECEIRA

3.1. Cálculo do encontro

3.1.1. Carregamento permanente

Figura 54 - Encontro elemento de cabeceira

$$g1 = [(h1 * b1) + (h2 * b2)] * \forall c$$

$$g1 = [(2,0*0,25) + (0,25*0,3)] * 25 = 14,375 kN/m$$

Para o peso próprio da laje de transição tem-se:

$$g2 = ht * lt * \forall c$$

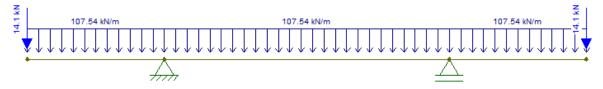
$$g2 = 0.25 * 2.25 * 25 = 14.06 \, kN/m$$

Além disso, calcula-se a carga permanente proveniente da laje da ponte (peso próprio + pavimento) e da ala, dados pelas equações abaixo:

$$g3 = \left[\left(\frac{0.2 + 0.25}{2} \right) * 25 + 24 * \left(\frac{0.04 + 0.16}{2} \right) \right] * 10.20$$

$$g3 = (5.63 + 2.4) * 10.2 = 81.91 \, kN/m$$

Portanto, o carregamento permanente distribuído total é:

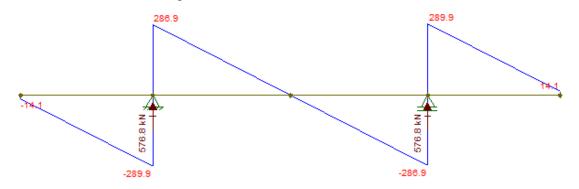

$$g = 14,375 + 14,06 + 81,91 = 110,35 \, kN/m$$

Ademais, calcula-se o carregamento proveniente da ala lateral, sendo uma carga concentrada nos dois extremos.

$$g4 = \left(\frac{2,0+0,5}{2} * 2,25\right) * 0,2 * 25 = 14,06 \, kN$$

Com isso, tem-se o seguinte carregamento:

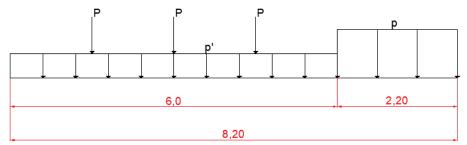
Figura 55 - Carregamento permanente para os elementos de encontro



Com o software Ftool retira-se os momentos nos apoios e no meio do vão, bem como as reações de apoio, mostrados na Figura 56.

Figura 56 - Momentos e reações de apoio

Figura 57 - Cortante máximo e mínimo


Portanto, tem-se que:

- $M0 = -380.00 \, kNm$
- $M1 = -7,00 \, kNm$
- $R0 = R1 = 576,80 \ kN$

3.1.2. Carregamento móvel

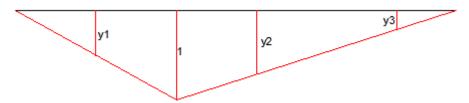

Para a carga móvel tem-se o seguinte carregamento:

Figura 58 - Carregamento móvel para os elementos de encontro

Para isso tem-se a seguinte linha de influência:

Figura 59 - Linha de influência para carregamento móvel

Dessa forma, tem-se que y1, y2 e y3 são:

$$\frac{1}{3} = \frac{y1}{1,5}$$
 $\frac{1}{5,20} = \frac{y2}{3,70}$ $\frac{1}{5,20} = \frac{y3}{1,10}$ $y1 = 0.5$ $y2 = 0.71$ $y3 = 0.21$

Com isso, sabendo que o coeficiente de impacto $\varphi=1,688$ tem-se que o carregamento para as rodas, para a multidão na faixa e ao lado do veículo são:

• Para as rodas:

$$P = P * \varphi * (y1 + 1 + y2)$$

$$P = 75 * 1,688 * (0,5 + 1 + 0,71) = 279,79 kN$$

• Para a multidão na faixa do veículo

$$p = p * \varphi * A$$

$$p = 5 * 1,688 * \left(\frac{2,2 * 0,21}{2}\right) = 1,95 \ kN/m$$

• Para multidão ao lado do veículo

$$p' = p' * \varphi * A$$

$$p' = 5 * 1,688 * \left(\frac{2,42 * 3}{2}\right) = 30,64 \text{ kN/m}$$

Com isso, tem-se que os cortantes e momentos máximos de cada seção é:

Figura 60 - Momentos máximos e mínimos para carregamento móvel no encontro

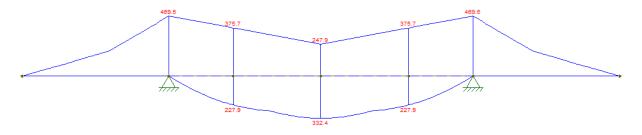
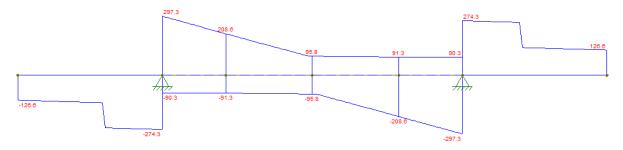



Figura 61 - Cortantes máximos e mínimos para carregamento móvel no encontro

Portanto, tem-se que:

- $Vm\acute{a}x(0) = 297,30 \, kN$
- $Mm\acute{a}x(0) = -469,50 \, kNm$
- $Vm\acute{a}x(1) = 95.80 kN$
- $Mm\acute{a}x(1) = 332,40 \ kNm$

3.1.3. Fadiga à flexão

Dados da seção retangular utilizada:

- bw = 20 cm
- h = 225 cm
- d = 160 cm

Primeiramente, faz-se a combinação dos momentos máximos do carregamento móvel com o carregamento permanente, a fim de determinar o carregamento de cálculo (para o apoio)

$$Md = 1.4 * (-380 - 469.50)$$

 $Md = -1189.30 \, kNm$

Com isso, para o cálculo da área de aço primeiramente faz-se o cálculo a linha neutra:

$$x = 1,25d * \left(1 - \sqrt{1 - \left(\frac{Md}{0,425 * Fcd * bw * d^2}\right)}\right)$$

$$x = 1,25 * 160 * \left(1 - \sqrt{1 - \left(\frac{-1189,30 * 100}{0,425 * \frac{3,5}{1,4} * 25 * 160^2}\right)}\right)$$

$$x = 18,33 cm$$

Dessa forma, a área de aço para o apoio é:

$$As = \frac{Md}{fyd * (d - 0.4x)}$$

$$As = \frac{-1189,30 * 100}{\frac{50}{1,15} * (160 - 0.4 * 18.33)} = 17.92 cm^{2}$$

Respeitando a área de aço mínima, dada por:

$$As, min = \rho min * Ac$$
 $As, min = \frac{0.164}{100} * (20 * 225)$
 $As, min = 7.38 cm^2$

Para o cálculo da fadiga determina-se o momento fletor M1 e M2, sendo M1 o de maior valor e M2 o de menor valor em módulo, para cada seção e, com isso, calcula-se o coeficiente de fadiga (k), que possui as seguintes premissas.

• Se M1 e M2 tiverem o mesmo sinal:

$$k = \frac{M1 - M2}{M1} * \frac{5}{3,6}$$

• Se M1 e M2 tiverem sinais opostos:

$$k = \frac{|M1| + 0.5 * |M2|}{|M1|} * \frac{5}{3.6}$$

Sendo que obrigatoriamente $k \ge 1$. Dessa forma, tem-se com o resumo dos coeficientes de fadiga (k), área de aço positiva e negativa para cada uma das seções.

Tabela 33 - Área de aço calculada e coeficiente de fadiga

Seção	As,cal+ (cm ²)	As,cal- (cm ²)	k
Apoio	17,92	7,80	1
Meio	7,38	7,38	1,93

Portanto, considerando o coeficiente de fadiga tem-se que a área de aço final com a quantidade de aço necessárias são:

Tabela 34 - Área de aço considerando fadiga

Seção	As,fad I (cm²)	Qtd. de barras (φ16)	As,fad S (cm ²)	Qtd. de barras (φ16)
Apoio	17,92	9	7,80	4
Meio	14,26	8	14,26	8

3.1.4. Forças cortantes

O esforço cortante resistente é dado pela Equação 63 abaixo.

$$Vrd2 = 5091 * bw * d$$
 (63)

$$Vrd2 = 5091 * 0.25 * 1.6$$

$$Vrd2 = 2036,40 \, kN$$

Para o cálculo da armadura tem-se:

$$Vwd = Vsd - Vc0$$

Onde,

$$Vc0 = 870 * bw * d$$

$$Vc0 = 870 * 0,25 * 1,6 = 348 kN$$

$$Vsd = 1,4 * (297,30) + 1,4 * 286,9 = 817,88 kN$$

Portanto a área de aço para o cortante na seção do apoio (0) é dada pela Equação 64:

$$Asw = \frac{Vwd}{0.9 * d * fyd} \tag{64}$$

$$Asw = \frac{817,88 - 348}{0,9 * 1,6 * \frac{50}{1.15}} = 7,51 \text{ cm}^2$$

Para o cálculo da fadiga determina-se para o esforço cortante V1 e V2, sendo V1 o de maior valor e V2 o de menor valor em módulo, para cada seção e, com isso, calcula-se o coeficiente de fadiga (k), que possui as seguintes premissas.

• Se V1 e V2 tiverem o mesmo sinal:

$$k = \frac{V1 - V2}{V1} * \frac{5}{2.8}$$

• Se V1 e V2 tiverem sinais opostos:

$$k = \frac{5}{2.8}$$

Como os cortantes possuem sinais opostos, o coeficiente de fadiga k=1,79. Portanto, a área de aço considerando a fadiga é de:

$$As, fad = 7.51 * 1.79 = 13.43 cm^2$$

Portanto, serão necessários 5 estribos de \$\phi 10 \text{ mm por metro.}

3.2. Empuxo de terra no encontro

Considerando o ângulo de atrito do solo $\phi = 30^{\circ}$ e peso específico $\forall s = 19 \ kN/m^3$ tem-se a seguinte Equação 65.

$$Pa = ka * \forall s * h \tag{65}$$

Onde,

- $k0 = 1 sen\phi = 0.5$
- $ka = tg^2(45 0.5\phi) = 0.33$
- h (altura da longarina) = 2,0 m

Portanto,

$$Pa = 0.33 * 19 * 2.0 = 12.54 \, kN/m^2$$

3.2.1. Para momento no apoio (seção 0)

Com isso, faz-se o cálculo dos momentos para a seção 0 (no apoio).

$$Md = 1.4 * \frac{12.54 * 2.5^2}{2} = 54.86 \, kNm/m$$

Dessa forma, tem-se que a área é aço é:

$$As = \frac{54,86 * 10^3}{\frac{5 * 10^4}{1,15} * 0,85 * 0,16} = 9,28 \ cm^2/m$$

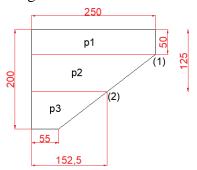
Portanto, serão necessárias 8 barras com \$\phi\$ 12,5 mm por metro.

3.2.2. Para o momento no centro do vão (seção 1)

Com isso, faz-se o cálculo dos momentos para a seção 1 (no vão).

$$Md = 1.4 * \frac{12.54 * 5.2^2}{8} = 59.34 \, kNm/m$$

Dessa forma, tem-se que a área é aço é:


$$As = \frac{59,34 * 10^3}{\frac{5 * 10^4}{1.15} * 0,85 * 0,16} = 10,04 \ cm^2/m$$

Portanto, serão necessárias 9 barras com \$\phi\$ 12,5 mm por metro.

3.3. Empuxo na cortina lateral

Para o empuxo na cortina tem-se o seguinte esquema representado na Figura 59.

Figura 62 - Cortina lateral

Dessa forma, calcula-se a pressão na parte p1, p2 e p3, por meio da Equação 64 mostrada anteriormente.

$$p1 = 0.33 * 19 * 0.5$$

$$p1 = 0.33 * 19 * 0.5$$
 $p2 = 0.33 * 19 * 1.25$ $p3 = 0.33 * 19 * 2$

$$p3 = 0.33 * 19 * 2$$

$$n1 = 3.14 \, kN/m^2$$

$$n^2 = 7.84 \, kN/m^2$$

$$p1 = 3,14 \ kN/m^2$$
 $p2 = 7,84 \ kN/m^2$ $p3 = 12,54 \ kN/m^2$

3.3.1. Área de aço para a seção 1

Com isso, faz-se o cálculo dos momentos para a seção 1

$$Md = 1.4 * \frac{3.14 * 2.5^2}{2} = 13.74 \, kNm/m$$

Dessa forma, tem-se que a área é aço é:

$$As = \frac{13,74 * 10^3}{\frac{5 * 10^4}{1.15} * 0,85 * 0,16} = 2,32 \ cm^2/m$$

3.3.2. Área de aço para a seção 2

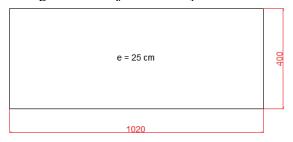
Com isso, faz-se o cálculo dos momentos para a seção 2

$$Md = 1.4 * \frac{7.84 * 1.525^2}{2} = 12.76 \ kNm/m$$

Dessa forma, tem-se que a área é aço é:

$$As = \frac{12,76 * 10^3}{\frac{5 * 10^4}{1.15} * 0,85 * 0,16} = 2,16 \text{ cm}^2/m$$

Como nenhuma das duas áreas atingiu a área de aço mínima, será considerada a mínima dada por:


$$As, min = \rho min * Ac$$

$$As, min = 0.164 * (16 * 100) = 2.62 cm^2$$

Portanto, serão necessárias 6 barras de \$\phi 8mm por metro.

3.4. Laje de transição

Figura 63 - Laje de transição

Peso próprio

$$g1 = e * \forall c$$

$$g1 = 0.25 * 25 = 6.25 \, kN/m^2$$

• Peso pavimentação – 5cm

$$a2 = 0.05 * 24 = 1.2 \, kN/m^2$$

Com isso, determina-se os parâmetros de entrada das tabelas de Rüsch por meio das equações abaixo:

$$\frac{lx}{a} = \frac{4}{2} = 2$$

$$\frac{t}{a} = \frac{0.44}{2} = 0.22$$

3.4.1. Cálculo dos momentos para carga permanente para laje de transição

Para o cálculo dos momentos na laje de transição é necessário fazer a interpolação dos dados da Tabela de Rüsch Nr. 5.

Com isso, utilizando a Equação abaixo, calcula-se o Mxm e Mym.

$$M = k * g * lx^2$$

Para Mxm

$$Mxm = kx * g * lx^2$$

$$Mxm = 0.21 * (6.25 + 1.2) * 4^2 = 25.03 kNm/m$$

• Para Mym

$$Mym = ky * g * lx^2$$

 $Mym = 0.12 * (6.25 + 1.2) * 4^2 = 14.30 \text{ kNm/m}$

3.4.2. Cálculo dos momentos para carga móvel para laje de transição

Para o cálculo dos momentos na laje de transição é necessário fazer a interpolação dos dados da Tabela de Rüsch Nr. 5.

Com isso, utilizando a Equação abaixo, calcula-se o Mxm e Mym.

$$M = \varphi * (P * MP + p * Mp + p' * Mp')$$

Para Mxm

$$Mxm = 1,688 * (75 * 0,32 + 5 * 0 + 5 * 0,22)$$

 $Mxm = 42,37 \ kNm/m$

• Para Mym

$$Mym = 1,688 * (75 * 0,53 + 5 * 0 + 5 * 1,06)$$

 $Mym = 76,04 \text{ kNm/m}$

3.4.3. Cálculo área de aço

3.4.3.1. Para Mxm

$$Md = 25,03 + 42,37 = 67,40 \, kNm/m$$

Com isso, a área de aço é de:

$$As = \frac{Md}{fyd * 0,85d}$$

$$As = \frac{1,4 * 67,40 * 10^4}{\frac{5 * 10^5}{1,15} * 0,85 * 0,215}$$

$$As = 11,87 \ cm^2/m$$

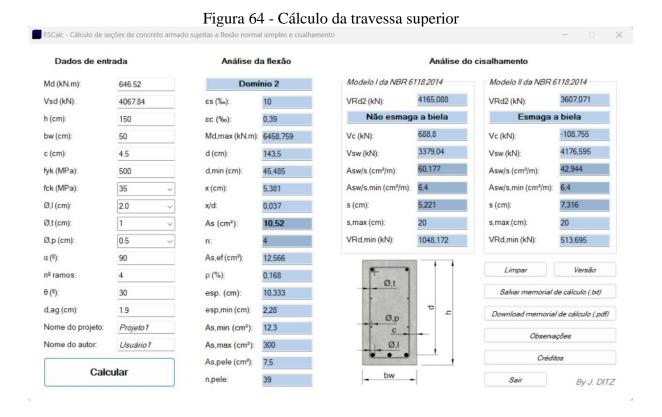
Portanto, serão necessárias 10 barras de \$\phi\$ 12,50 mm por metro.

3.4.3.2. Para Mym

$$Md = 76,04 + 14,30 = 90,34 \, kNm/m$$

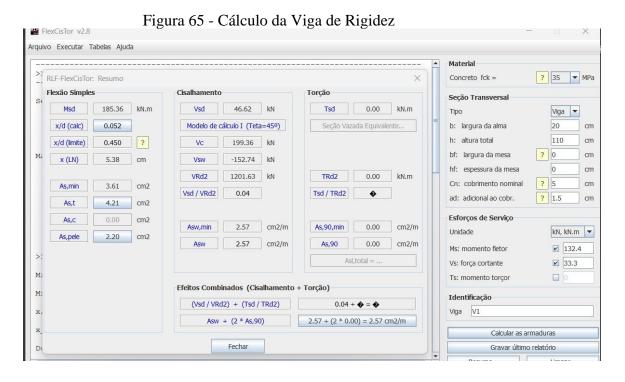
Com isso, a área de aço é de:

$$As = \frac{Md}{fyd * 0,85d}$$


$$As = \frac{1,4 * 90,34 * 10^4}{\frac{5 * 10^5}{1,15} * 0,85 * 0,20}$$

$$As = 17.11 \ cm^2/m$$

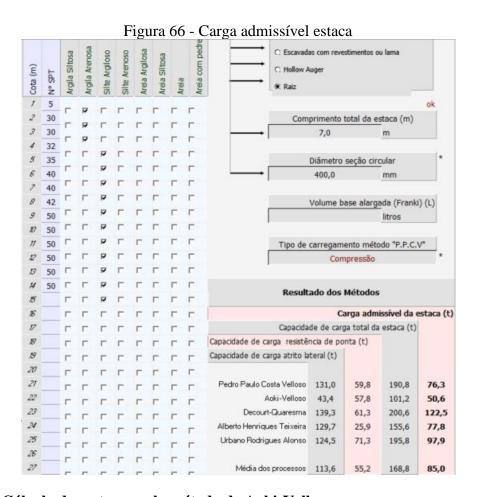
Portanto, serão necessárias 14 barras de \$\phi\$ 12,50 mm por metro.


3.5. Cálculo da travessa superior

Para o cálculo da travessa superior utilizou-se como auxílio o software FlexCisTor do grupo TQS, com resultados mostrados na Figura 64.

3.6. Cálculo da Viga de Rigidez

Para o cálculo da travessa superior utilizou-se como auxílio o software FlexCisTor do grupo TQS, com resultados mostrados na Figura 65.


Portanto, serão necessárias a seguinte quantidade de barras:

- 2 barras de φ20 mm para a viga de rigidez;
- 5 barras de φ8 mm para a armadura de pele;
- \$\phi 5\$ mm a cada 15cm para o cortante.

4. FUNDAÇÕES

Devido aos esforços resultantes na fundação de acordo com as figuras x e y (referenciar as figuras do pórtico e pilar em balanço). Sendo a carga vertical $Nk = 2871,80 \ kN$, tem-se que:

$$Nsd = 2871.8 * 1.4 = 4020.52 kN$$

4.1. Cálculo das estacas pelo método de Aoki-Velloso

A carga de ruptura (P_R) é dada pela equação:

$$P_R = P_L + P_P$$

Onde:

- P_R é a carga de ruptura na estaca;
- P_L é a parcela de atrito lateral;
- P_P é a parcela de ponta;

Portanto, a parcela de carga devido ao atrito lateral P_L é:

$$P_L = \Sigma per. \Delta L. r_L$$

Onde:

- per é o perímetro da estaca;
- ΔL é a espessura da camada;
- r_L Resistência unitária lateral;

Parcela de carga devida à resistência de Ponta P_P

$$P_P = A_p. \, r_p = \frac{\pi. \, 0.40^2}{4}$$

Onde:

- A_p é a área da ponta
- r_p é a resistência unitária de ponta

As equações para determinação de r_L e r_p são:

$$r_L = \frac{\alpha. K. N}{F_2}$$

$$r_p = \frac{K.\,N'}{F_1}$$

Onde:

- K, a = coeficientes tabelados conforme o tipo de solo (Figura 67);
- N = à média dos golpes para cada camada de solo;
- N' = número de golpes da camada de apoio;
- F1, F2 = coeficientes tabelados conforme o tipo de estaca (Figura 68);

Figura 67 - Coeficientes de transformação F1 e F2

Tipo de Estaca	F 1	F2
Franki	2,5	5,0
Cravadas (Pré-moldadas ou metálicas)	1,75	3,5
Hélice-contínua	2,0	4,0
Escavadas	3,0	6,0

Figura 68 - Coeficientes de K e α

K (kgf/cm²)	K (MPa)	α(%)
10,0	1,00	1,4
8,0	0,80	2,0
7,0	0,70	2,4
6,0	0,60	3,0
5,0	0,50	2,8
4,0	0,40	3,0
5,5	0,55	2,2
4,5	0,45	2,8
2,3	0,23	3,4
2,5	0,25	3,0
2,0	0,20	6,0
3,5	0,35	2,4
3,0	0,30	2,8
2,2	0,22	4,0
3,3	0,33	3,0
	K (kgf/cm²) 10,0 8,0 7,0 6,0 5,0 4,0 5,5 4,5 2,3 2,5 2,0 3,5 3,0 2,2	10,0 1,00 8,0 0,80 7,0 0,70 6,0 0,60 5,0 0,50 4,0 0,40 5,5 0,55 4,5 0,45 2,3 0,23 2,5 0,25 2,0 0,20 3,5 0,35 3,0 0,30 2,2 0,22

A carga de projeto (Pproj) é dada pela carga de ruptura dividida pelo coeficiente de segurança para fundações profundas, segundo a ABNT NBR 6122, igual a dois.

$$P_{proj} = \frac{P_r}{2}$$

4.2. Cálculo das estacas pelo método de Decourt-Quaresma

A carga de ruptura é obtida através da equação:

$$P_r = P_L + P_P$$

Onde:

- $P_r = \text{carga de ruptura};$
- P_L = parcela devido ao atrito lateral;
- P_P = parcela correspondente à resistência na ruptura da ponta.

Parcela de carga devido ao atrito lateral P_L é dada por:

$$P_L = per. \Delta L. q_s$$

Onde:

- per = perímetro da estaca;
- ΔL = espessura da camada;
- q_s = atrito lateral unitário.

$$q_s = \frac{\overline{N}}{3} + 1 \left(\frac{tf}{m^2}\right)$$

Sendo que N = média dos valores de NSPT ao longo do fuste, não considerando o último metro de estaca. Caso os valores de NSPT forem menores de 3, devem ser considerados iguais a 3 e quando maiores que 50, devem ser considerados iguais a 50.

Parcela de carga devido à ponta (P_p):

$$P_p = A_p \cdot q_p$$

Onde:

- $A_p =$ área da ponta
- q_p = resistência unitária da ponta

$$q_p = K'.N'$$

Onde:

- K' = coeficiente em função do tipo de solo;
- N' = média dos três valores de SPT (camada de apoio, 1 metro acima da base e 1metro abaixo da camada de apoio).

A Figura 70 apresenta os valores de K' em função do tipo de solo.

105 40 11	
K' (kPa)	K' (tf/m ²)
120	12
200	20
	K' (kPa) 120

400

Figura 69 - Valores de K'

A carga de projeto (P_{proj}) é dada pelo menor valor entre:

$$P_{proj} \le \begin{cases} \frac{P_r}{2} \\ \frac{P_L}{1.3} + \frac{P_p}{4} \end{cases}$$

Em 1996, Décourt expandiu a metodologia para outros tipos de estacas, calculando a carga de ruptura conforme equação:

$$P_R = \beta P_L + \alpha P_p$$

Figura 70 - Valores do fator em função do tipo de estaca e do tipo de solo

	Tipo de estaca				
Tipo de solo	Escavada em geral	Escavada (bentonita)	Hélice continua	Raiz	Injetada sob altas pressões
Argilas	0,8*	0,9*	1,0*	1,5*	3,0*
Solos intermediários	0,65*	0,75*	1,0*	1,5*	3,0*
Areias	0,5*	0,6*	1,0*	1.5*	3,0*

Figura 71 - Valores de fator em função do tipo de estaca e do tipo de solo

Tipo de solo	Tipo de estaca				
	Escavada em geral	Escavada (bentonita)	Hélice contínua	Raiz	Injetada sob altas pressões
Argilas	0,85	0,85	0,3*	0,85*	1,0*
Solos intermediários	0,6	0,6	0,3*	0,6*	1,0*
Areias	0,5	0,5	0,3*	0,5*	1,0*

Com isso, para o cálculo da quantidade de estacas é dada por:

$$N = \frac{Nsd}{P_{proj}}$$

4.3. Cálculo dos momentos na estaca

O método a seguir apresentado considera a superposição dos efeitos da carga normal e dos momentos fletores, atuando separadamente. Para ser válido o procedimento, os eixos x e y devem ser os eixos principais de inércia e as estacas devem ser verticais, do mesmo tipo, diâmetro e comprimento.

Com isso, para pilar submetido a uma carga vertical N e momentos M_x e M_y apoiado sobre um conjunto de estacas verticais, a tensão no centro de uma estaca i, é dada por:

$$N_{i} = \frac{1.1N}{n_{e}} + \frac{M_{x} y_{i}}{\Sigma y_{i}^{2}} + \frac{M_{y} x_{i}}{\Sigma x_{i}^{2}}$$

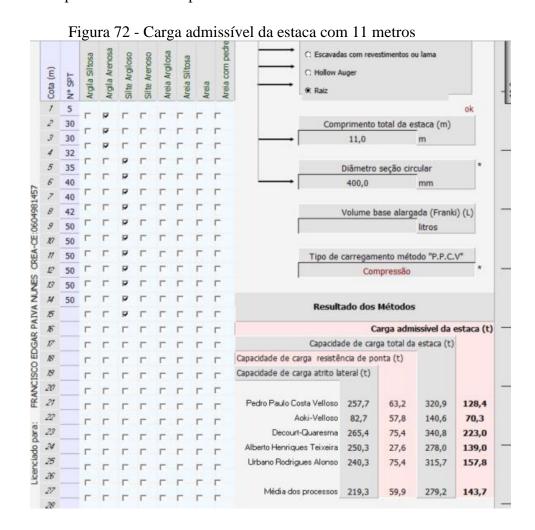
Onde:

- N = carga vertical do pilar;
- S = área da seção transversal de todas as estacas;
- M_x = momento fletor que atua em torno do eixo x, positivo quando comprime o lado positivo do eixo y;
- My = momento fletor que atua em torno do eixo y, positivo quando comprime o lado positivo do eixo x;
- x_i = coordenada x da estaca i;
- y_i = coordenada y da estaca i.

$$N_{i} = \frac{1,1N}{n_{e}} + \frac{M_{x}y_{i}}{\sum y_{i}^{2}} + \frac{M_{y}x_{i}}{\sum x_{i}^{2}}$$

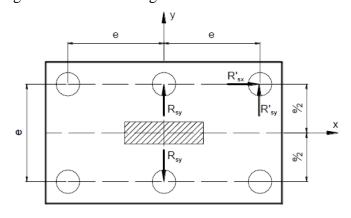
$$N_{1} = \frac{1,1.4020,52}{6} + \frac{710,92.100(60)}{(-60)^{2} + (60)^{2}} + \frac{185,36.100.(-120)}{2((-120)^{2} + (120)^{2})} = 1290,91 \, kN$$

$$N_{2} = \frac{1,1.4020,52}{6} + \frac{710,92.100(60)}{(-60)^{2} + (60)^{2}} + \frac{185,36.100.(0)}{2((-120)^{2} + (120)^{2})} = 1329,52kN$$


$$N_{3} = \frac{1,1.4020,52}{6} + \frac{710,92.100(60)}{(-60)^{2} + (60)^{2}} + \frac{185,36.100.(120)}{2((-120)^{2} + (120)^{2})} = 1368,13 \, kN$$

$$N_{4} = \frac{1,1.4020,52}{6} + \frac{710,92.100(-60)}{(-60)^{2} + (60)^{2}} + \frac{185,36.100.(-120)}{2((-120)^{2} + (120)^{2})} = 106,05 \, kN$$

$$N_5 = \frac{1,1.4020,52}{6} + \frac{710,92.100(-60)}{(-60)^2 + (60)^2} + \frac{185,36.100.(0)}{2((-120)^2 + (120)^2)} = 144,66 \, kN$$


$$N_6 = \frac{1,1.4020,52}{6} + \frac{710,92.100(-60)}{(-60)^2 + (60)^2} + \frac{185,36.100.(120)}{2((-120)^2 + (120)^2)} = 183,27 \text{ kN}$$

Para aumentar a capacidade de carga da estaca para suportar os devidos esforços aumentou-se o comprimento da estaca para 11 metros.

4.4. Cálculo do bloco de fundação

Figura 73 - Bloco retangular sobre 6 estacas

$$Nsd = 4020,52 \, kN$$

$$Msdx = 710,92kNm$$

$$Msdy = 185,32kNm$$

4.4.1. Dimensionamento do bloco

4.4.1.1. Cálculo do espaçamento entre as estacas

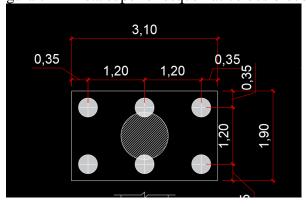
$$e = 3D$$

Onde,

• D é o diâmetro da estaca.

4.4.1.2. Cálculo das dimensões em planta

$$L \ge \begin{cases} 2e + D + 2x15 \ cm \\ a + 10 \ cm \end{cases}$$


$$B \ge \left\{ \begin{matrix} a+10 \ cm \\ e+D+2x15 \ cm \end{matrix} \right.$$

4.4.1.3. Cálculo da altura útil

$$d' \ge \begin{cases} \frac{5 cm}{4cm} & \frac{1}{5} = \frac{1}{5} \frac{\sqrt{\pi}}{2} & 0 \end{cases}$$

$$d_{min} = 0.85 \left(e - \frac{a_p}{3.4} \right)$$

$$d_{max} = 1.2 \left(e - \frac{a_p}{3.4} \right)$$

$$h = d + d'$$

Figura 74 - Vista superior esquemático dos blocos

4.4.1.4. Cálculo dos esforços de tração

$$T_{x} = \frac{\Sigma N_{i}. x_{i}}{0.85d}$$

$$T_y = \frac{\Sigma N_i. y_i}{0.85d}$$

4.4.1.5. Cálculo da armadura principal

$$As_x = 1,61 \frac{T_x}{fyk}$$

$$As_y = 1,61 \frac{T_y}{fyk}$$

4.4.1.6. Cálculo da armadura horizontal (estribo)

$$As_h = \frac{As}{8}$$

Usando o software Excel para o cálculo das armaduras tem-se o seguinte resultado:

- $Asx = 109,10 \text{ cm}^2$, sendo necessárias 35 barras de ϕ 20mm;
- $Asy = 81,83 \text{ cm}^2$, sendo necessárias 26 barras de ϕ 20mm;
- $Ash = 13,64 \text{ cm}^2$, sendo necessárias 18 barras de $\phi 10\text{mm}$.

5. TERMO DE ENCERRAMENTO

Este memorial de cálculo é composto por 149 (cento e quarenta e nove) páginas numeradas, e está devidamente assinado. Sem mais acrescentar, os responsáveis por este Memorial de Cálculo são profissionais devidamente habilitados e declaram ter sua conduta ética profissional norteada pelo CREA.

Engenheira Civil Larissa Brandão Popi CREA 1017963088/D-GO

Engenheira Civil
Paula Campos Perini
CREA 1021383600/AP-GO