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This work developed and validated a newmultivariate diffuse reflectance near infrared method for direct determi-
nation of hydrochlorothiazide in powder pharmaceutical samples. The best partial least squares (PLS) model was
obtained in the spectral region from 1640 to 1780 nm, with mean centered data preprocessed by first derivative
and Savitzky–Golay smoothing followed by vector normalization. This model was built with 4 latent variables and
provided a rootmean square error of prediction of 1.7%. Themethodwas validated according to the appropriate reg-
ulations in the range from21.25 to 29.00 mgof hydrochlorothiazide per 150 mgof powder (averagemass tablet), by
the estimate of figures of merit, such as accuracy, precision, linearity, analytical sensitivity, capability of detection,
bias and residual prediction deviation (RPD). The concept of net analyte signal (NAS) was used to estimate
some figures of merit and to plot a pseudo-univariate calibration curve. The results for determinations in pow-
dered manufactured tablets were in agreement with those of the official high performance liquid chromato-
graphic method (HPLC). Finally, the method was extrapolated for determinations in intact tablets, providing
prediction errors smaller than ±9%. The developed method presented the advantage of being about fifteen
times faster than the reference HPLC method.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The combination of near infrared spectroscopy (NIRS) andmultivar-
iate calibration has emerged in the last decade as a promising alterna-
tive for the quality control of active pharmaceutical ingredients (API)
[1–8], providing methods that are simple, rapid, non-destructive and
of low cost. In addition, methods based on NIRS are environmentally
friendly and solvent free, generate no chemical waste, may not require
any sample pre-treatment, and provide sufficient accuracy and sensitiv-
ity with less human intervention. The development of these methods
requires a robust calibration design that incorporates all the possible
sources of variation, thus improving the quality control of the final
product. However, in practice few quantitative NIRS methods are used
for the determination of APIs in the quality control laboratories of the
pharmaceutical industry. The main challenge is developing of NIRS
methods that meet the stringent requirements of this highly regulated
industry [3]. In the last years, Brazilian and US Pharmacopoeias [9,10]
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have published general monographs about NIRS methods, but they
have nomonographs about multivariate methods for the quantification
of specific APIs in pharmaceutical formulations. Themost of the present
regulation has been established based on chromatographic methods in
a univariate way, such as the guidelines of ANVISA (National Health
Surveillance Agency) [11], in Brazil, and ICH (International Conference
on Harmonisation) [12,13]. Thus, these regulations should be harmo-
nised in order to encompass the specific aspects of NIRS technology re-
lated to multivariate methods.

The main aspect of this harmonisation is the incorporation of the
multivariate thinking in the traditional analytical validation. The re-
quirement of total selectivity/specificity [11,12] should be eliminated
for multivariate methods, since they are only useful when a selective
variable/wavelength does not exist. The traditional calibration curves
(signal as a function of analyte concentration) should also not be
employed with multivariate methods. Some of these aspects have
been discussed since about ten years ago [14], but the main concept
that emerged in the last years is the net analyte signal (NAS). The
NAS concept is an advance in the multivariate calibration theory
that allows separating the information specific of the analyte from
the whole signal, and can be used for estimating important figures
of merit (FOM) in pharmaceutical applications. In addition, NAS
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values of each sample can be used to represent multivariate models as
pseudo-univariate curves, an easier and simpler manner to interpret
them in routine analyses. Thus, this work aimed to incorporate the
state of the art in the multivariate validation [15] for the development
of aNIRSmethod for quality control of a hydrochlorothiazide (HCTZ) for-
mulation by using diffuse reflectance measurements and partial least
squares (PLS). In the context of process analytical technology (PAT),
this method was developed for quantification in powder samples, but
it was also applied on intact tablets.

Moreover, this method development adopted a robust strategy,
including an experimental design, variable selection, data preproces-
sing and outlier detection.

HCTZ, 6-chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulpho-
namide-1,2-dioxide [16], is a thiazide drug used for the treatment of hy-
pertension, congestive heart failure, hepatic cirrhosis and some kidney
diseases. It is a diuretic, which inhibits the ability of the kidney to retain
water by increasing the excretion of sodium, chloride and, to a lesser ex-
tension, potassium ions. The officialmethods for HCTZ determination in
pharmaceutical formulations are based on HPLC [9,10], but many other
methods have been published, based on UV/visible spectrophotometry
[17,18], chemiluminescence [19], capillary electrophoresis [20] and
electroanalytical techniques [21,22]. Nevertheless, the majority of
these methods have not been able to determine directly HCTZ in the
presence of interferences, such as excipients, impurities and other ac-
tive principles, demanding steps of separation and the use of reagents
or solvents. Themethod proposed in thiswork provides a direct analysis
of powder pharmaceutical samples and uses no solvent or reagent.

2. Multivariate analytical validation

2.1. NAS and pseudo-univariate calibration curves

The concept of NAS is useful in the development of NIRS methods. It
can be defined as the part of the analytical signal uniquely related to the
analyte or property of interest, which is orthogonal to the space of the
interferences. This concept was first proposed by Lorber in 1986 for di-
rect multivariate calibration methods (classical least squares) [23], but
has found few applications until some years ago, when it was improved
and extended to inversemultivariate calibrationmethods, such PLS and
PCR (principal component regression) [24]. A NAS vector, x̂A;inas, is es-
timated for each sample i from the regression vector of a PLS/PCRmodel
with A latent variables (LV), b, according to Eq. (1).

x̂nas
A;i ¼ b bTb

� �−1
bTxi ð1Þ

The NAS vectors can be used for qualitative analysis and the norm
of each one provides a scalar nâsi, which is equivalent to a selective
univariate analyte signal for each sample. A more complete theoreti-
cal description of NAS model can be found elsewhere [8,15,23,24].

The use of NAS is important in the analytical validation for estimat-
ing FOM, such as sensitivity, selectivity, and limits of detection and
quantitation [15,25]. Moreover, it also allows presenting multivariate
calibration models in a more interpretable way, through the pseudo-
univariate calibration curves [26]. In the first step, x̂A;inas vectors are
calculated for the calibration samples, and then a regression coefficient,
b̂nas, is estimated by a linear regression between a vector containing the
scalar nâs values, nâs, and the vector of the analyte concentrations (y).

b̂nas ¼ nâsTnâs
� �−1

nâsTy ð2Þ

In the last step, the regression model is expressed as:

ŷ ¼ b̂nasnâsþ e ð3Þ

where e is a vector containing the residuals of the model.
2.2. Figures of merit (FOM)

The traditional regulation [11–13] prescribes that the validation of an-
alyticalmethods for API content determination requires the estimation of
the following FOM: specificity/selectivity (SEL), linearity, accuracy, preci-
sion and range. Limit of detection is not required for this type of method,
but only for the quantification of impurities. Aiming at a complete multi-
variate analytical validation, this work also estimated sensitivity (SEN),
analytical sensitivity (γ), bias, capability of detection (CCβ) and residual
prediction deviation (RPD). The SEL for multivariate methods is calculat-
ed as the ratio between the norm of the NAS vector and the norm of each
spectrum. Since each sample presents a different SEL, an average value is
used to characterized themethod [15,25]. As mentioned in the Section 1,
NIRS multivariate methods do not require signal resolution. Therefore,
there is no sense in establishing a limiting SEL value. An alternative for
evaluating specificity is the demonstration that themethod is able to dis-
tinguish other components, such as impurities, degradation products or
other active principles.

The precision and accuracy can be estimated in a similar manner
for univariate and multivariate methods. In this work, precision was
assessed at two levels, repeatability and intermediate precision. The
accuracy can be evaluated through the relative prediction errors of
the individual samples. However, the accuracy for multivariate
methods uses to be also evaluated through parameters, such as
RMSEC (root mean square error of calibration), RMSECV (root mean
square error of cross validation) and RMSEP (root mean square
error of prediction). Among these, RMSEP is the most robust parame-
ter, because it is estimated from external validation samples. The lin-
earity can be evaluated from the verification of the random behaviour
of the fit residuals of a plot of reference versus predicted values. Once
this random behaviour has been assured, the linearity can be
expressed through the correlation coefficient (r) of this plot. Alterna-
tively, the parameters of the pseudo-univariate calibration curve
could be used to express linearity. However, it should be stressed
that the value of r should be the same for both of these plots. The
range is established by confirming that the method provides an ac-
ceptable degree of linearity, accuracy and precision when applied to
samples in the range from 80 to 120% of the test content.

The SEN of multivariate methods is estimated as the NAS at unit
concentration, which is equivalent to the following equation.

SEN ¼ 1= bj jj j ð4Þ

where “|| ||” indicates the Euclidian norm of a vector. A more useful
FOM is the analytical sensitivity (γ), which is defined, by analogy
with univariate calibration [27], as the ratio between SEN and the in-
strumental noise (ε). The instrumental noise can be estimated
through the pooled standard deviation of a vector containing fifteen
replicate spectra of the blank [15].

γ ¼ SEN=ε ð5Þ

The inverse of γ (γ-1) provides an estimation of the minimum
concentration difference that is discernible by the analytical method
considering the random experimental noise as the only source of
error, regardless of the specific technique employed.

The term bias evaluates the presence of systematic errors, and is de-
fined as the difference between the limitingmean and the true value. It
is calculated only from the validation set, according to ASTM [28]:

bias ¼
Xnv

i¼1

yref i−ŷ i

� �

nv
ð6Þ

where yrefi and ŷare the analyte concentration values of reference and
predicted by PLS model, respectively, and nv is the number of samples
in the validation set. Standard deviation of validation errors (SDV) is



Fig. 1. Experimental design used in this work.
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also calculated and used in a t test to determine if the validation esti-
mates show a statistically significant bias.

SDV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ yrefi −ŷ i

� �
−bias

h i

nv−1

2
vuut ð7Þ

The calculated t value (t=|bias|
ffiffiffiffiffi
nv

p
/ SDV) is then compared to

the critical t value with the adequate number of degrees of freedom,
which is equal to nv.

The concept of CCβ, present in the ISO 11843–2 [29], has been ex-
tended for multivariate calibration by Ortiz et al. [30], according to
Eq. (8), considering a calibration set without replicated samples.

CCβ ¼ δα;β;v
s eð Þ
bcal

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nc

þ1þ y2

∑nc
i¼1 yi−y

� �2

vuut ð8Þ

In this equation s(e) and bcal are, respectively, the standard deviation
of the residuals and the slope of the reference versus predicted concen-
tration values curve, nc is the number of samples in the calibration set,
and δα,β,ν is the parameter of the non-central t-distribution with proba-
bilitiesα and β and the number of degrees of freedom (ν) equal to nc-2;
in this work, δ=3.328 was used, corresponding toα and β probabilities
of 0.05 (95% confidence level) [31].

The residual prediction deviation or relative predictive determinant
(RPD) [32,33] is the ratio of natural variation in the calibration or valida-
tion samples to the size of probable errors occurring during the predic-
tion. The RPD represents how well the calibration model predicts a
specific set and it is more appropriate for evaluating the performance
of a model in absolute terms. Specifically, the RPD is calculated for the
calibration and validation sets according to the following equations:

RPDcal ¼ SDcal=RMSECV ð9Þ

RPDval ¼ SDval=RMSEP ð10Þ

where SD is the standard deviation of the reference values for the cali-
bration (SDcal) and validation (SDval) sets.

2.3. Detection of outliers

The detection of outliers is fundamental for developing good NIRS
models. This work employed a robust procedure for outlier detection
based on the identification of samples with extreme leverages, large
residuals in the spectral data or large residuals in the analytical con-
centration values [28,34]. The leverage, hi, is a measure of the influ-
ence of each sample on the model. Samples with hi larger than a
limit value (three times the number of LVs plus one, divided by the
number of calibration samples) should be deleted. Outliers with
high spectral data residuals are detected by comparison of the total
standard deviation, s(e), with the standard deviation of each sample,
s(ei), related to the values of absorbance or log(1/R) measured and
predicted with A LVs [8,34]. If a sample has s(ei)>2 s(e), it should
be deleted, at about 95% confidence level. Outliers with high residuals
in the concentration values can be detected by comparing the RMSEC
of the model with absolute errors of individual samples. If a sample
has a difference between its reference value and its estimate larger
than three times the RMSEC, it should be deleted.

3. Materials and methods

3.1. Apparatus and software

Spectra were recorded on a Foss NIRSystems 4500 Smart Probe
Analyzer spectrophotometer (Silver Spring, USA), equipped with a
diffuse reflectance accessory. The equipment was controlled and
data were acquired using the Foss Vision 3.3.0.0 software package.
Data were handled using MATLAB software, version 7.13 (The Math-
Works, Natick, USA). The PLS routine came from PLS Toolbox, version
6.5 (Eigenvector Technologies, Manson, USA), and a homemade rou-
tine was also used for the detection of outliers. This last routine is
compatible with both Matlab and Octave, and can be found in the
supplementary material.

3.2. Reagents and samples

The target pharmaceutical formulation has 25 mg of HCTZ and the
following excipient composition: microcrystalline cellulose, sodium
croscarmellose, colloidal silicon dioxide, and magnesium stearate. All
the chemical reagentswere of analytical grade, purchased from certified
suppliers and used without further purification. Powder samples were
prepared by weighing with an analytical balance (±0.0001 g), accord-
ing to an experimental design.

3.3. Methodology

3.3.1. Experimental design
Ninety three powder samples were prepared according to an ex-

perimental design with three factors: HCTZ, cellulose, which is the
main excipient, and other excipients (croscarmellose, silicon dioxide,
and stearate), as shown in Fig. 1. The range of HCTZ content was var-
ied from 21.25 to 29.00 mg per 150 mg of powder (the average tablet
mass) in approximately equally spaced intervals, corresponding from
85.0 to 116.0% of the target content (25 mg). This range was chosen in
order to cover from 90.0 to 110.0% (from 22.50 to 27.50 mg per tab-
let) of the HCTZ target content, which are the acceptable limits estab-
lished by the Brazilian Pharmacopoeia [10] for this API content in this
type of formulation. Themass of 25 mgcorresponds to about 17%w/wof
each produced HCTZ tablet. The other two factors were also varied
according to the experimental design depicted in Fig. 1. In order to re-
duce the errors in the samples preparation, the weighted total mass of
each sample was fixed in 30.0000 g.

3.3.2. Procedure
The powder samples were prepared in amber glass flasks, manual-

ly homogenized and directly measured. The spectra were recorded
from 1100 to 2500 nm (step 2 nm) as the average of 32 scans. During
all the measurements, the laboratory temperature and the relative air
humidity were controlled at 22–28 °C and 35–65%, respectively. Trip-
licates of samples at three HCTZ content levels (90.4, 100.3 and
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110.2%) were also obtained for evaluating repeatability. These repli-
cates were compared with other triplicates obtained at these same
three levels on another day by a different analyst for estimating inter-
mediate precision. Fifteen spectra of the empty cell were recorded for
estimating the instrumental noise.

3.3.3. Analysis of real samples
The developed method was applied to real samples in three differ-

ent ways. Firstly, triplicates of powdered tablet samples from three
different batches were analyzed. Each sample was prepared by finely
powdering twenty tablets in an agate mortar with a pestle. Secondly,
ten intact tablets from the same batch were randomly sampled and
directly analyzed with the diffuse reflectance accessory. All these pre-
vious results were compared with the reference HPLC method. Final-
ly, triplicates of powder samples under control were collected in the
production line after the mixture step and before the compression
to tablets. These samples were obtained from six different batches,
during a period of three months, and analyzed.

3.4. Chromatographic analysis

The analysis with HPLCwas based on the official method [9] andwas
carried out with a Perkin Elmer liquid chromatograph, series 200, with
UV/Vis detection. An analytical C-18 column (250×4.6 mm, 5 μm) was
used. The mobile phase was water/acetonitrile (9:1, v/v), adjusted with
phosphate buffer at pH 3.0±0.1. A flow rate of 2.0 mL min-1 and detec-
tion at 254 nmwere used. The powder samples were dissolved in aceto-
nitrile, sonicated for 15 min, and passed through a 0.45 μm membrane
filter. All the injections were repeated three times.

4. Results and discussion

4.1. Pure HCTZ spectrum

A diffuse reflectance spectrum of pure HCTZ powder is shown in
Fig. 2. A qualitative analysis of this figure helps in highlighting the spec-
tral regions that may most contribute for predictive models. The region
below 1400 nm, associated with second overtone vibrations, do not
present intense bands. First overtones of N–H stretchings were ob-
served in the region between 1480 and 1620 nm, where the bands cen-
tered at 1518, 1552 and 1590 nm can be attributed to the three N–H
bonds of the amino groups of HCTZ. First overtones of C–H stretchings
were observed in the region from 1640 to 1780 nm, where the bands
centered at 1664 and 1738 nm can be attributed to the aromatic C–H
and aliphatic C–H (CH2 of the non-aromatic ring) bonds, respectively.
The most intense band at 2034 nm is associated with the primary
amine N–H combination of stretching and bending, and another
Fig. 2. NIR diffuse reflectance spectrum of a pure HCTZ sample. The spectral region se-
lected for PLS model is marked in a rectangle.
combination N–H band is present at 2173 nm. Combination bands of
carbon bonds are observed above 2200 nm, with the intense band at
2246 nm attributed to the combination of stretchings of =CH and
C=C [35].

4.2. PLS model

The spectra of all 93 prepared samples are shown in Fig. 3. They
were divided into 56 for the calibration set and 37 for the validation
set. The calibration samples were selected in order to ensure the rep-
resentative and homogenous distribution of them in the HCTZ con-
tent range, according to the experimental design (Fig. 1). The very
noisy spectral region above 2400 nm (Fig. 3) was deleted. NIR diffuse
reflectance spectra of powder samples use to present non-linear
baseline deviations, due to the multiplicative light scattering caused
by the lack of homogeneity of the particle size distribution. These in-
strumental deviations are not related to the chemical sample compo-
sition and require the use of preprocessing methods. In this work, the
most common preprocessing techniques used for NIR spectra [36]
were tested: multiplicative scatter correction (MSC), standard normal
variate (SNV), and first derivative with Savitsky-Golay smoothing fol-
lowed by vector normalization. The number of LVs of the PLS models
was chosen by contiguous block (with 7 splits) cross validation and
the combination of first derivative, smoothing (11 points in filter
and second order polynomial fit) and vector normalization provided
the best model, with 5 LVs and a RMSECV of 3.0%. Models using
MSC and SNV provided RMSEC values a bit higher with more LVs,
seven in both cases. The chosen preprocessing aimed at compensat-
ing any change in experimental conditions and increasing the signal
to noise ratio, stabilizing the model.

The results were optimized by testing local models on different re-
gions, which were chosen based on the qualitative analysis of the spec-
trum of pure HCTZ, discussed on Section 4.1. According to this
discussion, four spectral regions were tested, 1100–1400 nm (A),
1480–1620 nm (B), 1640–1780 nm (C) and 2000–2400 nm (D). Local
PLSmodels were comparedwith the PLSmodel using thewhole spectra
and the best results were obtained for region C: 4 LVs and a RMSECV of
2.6%. Other spectral regions provided similar RMSECVvalues and higher
number of LVs, such as 7 (B) and 8 (D), which is an indication of over-
fitting. Thus, the best PLS model was built with mean centered spectra
preprocessed by first derivative/Savitsky-Golay smoothing/vector nor-
malization in the region from 1640 to 1780 nm (Fig. 4), which is associ-
ated to the first overtones of the C-H stretchings of the analyte. This
model accounted for 99.68% of the total variance in the X block and
97.31% in the Y block. Considering the chosen number of LVs (4), it
was assured that the minimum necessary number of calibration and
validation samples was used, in accordance with ASTM guidelines
Fig. 3. Spectra of 93 HCTZ samples, corresponding to the calibration and validation sets.
The spectral region selected for PLS model is marked in a rectangle.
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Fig. 4. First derivative normalized spectra in the range from 1640 to 1780 nm. Fig. 5. Visualization of the outlier detection in the calibration set (first model). (a) His-
togram of leverage values. (b) Plot of spectral residuals (X) versus concentration resid-
uals (Y). The solid lines indicate the acceptance limits for outlier detection.

Table 2
Parameters estimated for evaluating the main FOM of the developed method.

Figures of merit Parameter Value

Accuracy RMSECV 1.6%
RMSEC 1.4%
RMSEP 1.7%

Precision RSD repeatability 1.7%
RSD intermediate precision 2.2%

Linearity Slope 1.02±0.04a

Intercept −2.01±3.6a
a
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[28], which prescribes 6x(number of LVs +1) and 4x(number of LVs)
samples for the calibration and validation sets, respectively.

4.3. Detection of outliers

Following the selection of the spectral region, the PLS model was
optimized using a procedure for detecting outliers based on the
methodology described in Section 2.3. In this optimization, seven out-
liers were detected in the calibration set, and other seven in the vali-
dation set. The whole procedure is detailed in Table 1, which shows
the changes of the RMSEC and RMSEP values. All of these models
were built with four LVs. Fig. 5 represents the detection of outliers
for the first model through the histogram of leverages and the plot
of spectral versus concentration residuals, including the acceptance
limits. It can be noted that for this first model four outliers were
detected, based on their large residuals in the concentration values
(Y). Considering the whole process (Table 1), ten more outliers
(three in the calibration set and seven in the validation set) were
detected, all of them based on their high residuals in Y. Therefore,
the optimized PLS model used 49 calibration and 30 validation
samples.

4.4. Analytical validation

Table 2 summarizes the parameters estimated for evaluating the
main FOM of the developed method. The average accuracy can be
evaluated through the parameters RMSECV, RMSEC and, mainly,
RMSEP. The obtained RMSEP of 1.7% is below ±2%, the acceptable
limits of accuracy commonly adopted for analytical methods in the
pharmaceutical industry [37]. The relative prediction errors for the
validation samples were between −2.8 and +2.7%. The precision
was evaluated through the relative standard deviation (RSD)
obtained for triplicates at three levels of HCTZ content. RSD values
of 1.7 and 2.2% were obtained for repeatability and intermediate pre-
cision, respectively. Both results are in accordance with the Brazilian
regulations [11], which prescribes a maximum RSD of 5%.
Table 1
Results for the optimization of the PLS model by detection of outliers.

Model 1st 2nd 3rd final

Number of calibration samples 56 52 49 49
Number of validation samples 37 37 37 30
RMSEC (%) 2.0 1.9 1.4 1.4
RMSEP (%) 2.5 2.3 2.3 1.7
The linearity of themethodwas evaluated by the residuals of the PLS
model, which are shown in Fig. 6. It is possible to verify the absence of
systematic trends in the residuals distribution, evidencing their random
behaviour. Once the residual plot indicates that the linear model is a
valid assumption, the fitting of a straight line to the reference versus
predicted values can be used to estimate a correlation coefficient that
can express the average agreement between the estimated and refer-
ence values. Nevertheless, this correlation coefficient cannot be as-
sumed as a quantitative measurement of the linearity. The results of
this fit for the calibration samples are presented in Table 2, and the
obtained value, 0.9865, is in accordance to the Brazilian regulations
[11]. Considering the linearity, precision and accuracy studies, the
range of the method was established from 85.0 to 116.0%, correspond-
ing from 22.5 to 27.5 mg of HCTZ per 150.0 mg of powder (one tablet).

The estimation of the method SEL was only possible with the appli-
cation of the NAS concept, providing an estimative of the amount of the
instrumental signal that was used by the calibration model for the de-
termination of the analyte. Although SEL is an essential parameter for
determinations with HPLC, inmultivariate NIRSmodels it has no practi-
cal meaning for quality control, since low values of SEL can be obtained
even with accurate results. The average SEL estimated for the method
corresponds to 33%, indicating a reasonable overlapping of the interfer-
ences (excipients) in the HCTZ signal.
Correlation coefficient 0.9865
Range 85.0 to 116.0%
Selectivity 0.33
Sensitivity 3.3×10−4b

Analytical Sensitivity (γ) 0.9%−1

γ-1 1.1%
CCβ 12.3%
Bias −0.267±1.729
RPD RPD calibration 5.6

RPD validation 5.1

a Values for the line fitted to the calibration samples.
b Value expressed as the ratio between log (1/R) and %.
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Fig. 6. PLS residuals for the calibration (circles) and validation (asterisks) samples.

Table 3
Determination of HCTZ in powdered tablets by the proposed NIRS method and the of-
ficial HPLC method.

Batch Official method (%)a Proposed method (%)a

#A 97.7±2.3 99.0±0.4
#B 99.3±1.3 96.8±1.6
#C 100.4±2.3 98.9±2.5

a Mean values and standard deviations of three determinations.
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The SEN of the method was estimated as 0.00033. This value is not
appropriate for comparison with other methods, since it depends on
the analytical technique employed and the analysed matrix. Thus, γ
was also calculated as 0.9%−1, based on the estimated instrumental
noise, 0.00038. The inverse of γ, 1.1%, indicates the minimum concen-
tration difference that the method can discern considering the random
instrumental noise as the only source of error. The CCβwas estimated as
12.3%, indicating that themethod is not able to estimate contents below
this value. However, this method is adequate for its purpose, since the
lower limit of the analytical range is about seven times higher than
this CCβ. The bias was estimated as −0.267±1.729 and a t test with
30 degrees of freedom and at 95% confidence level demonstrated that
there are no systematic errors in themodel (tcalc=0.860b tcrit=2.042).
The estimates of RPD for calibration and validation were 5.6 and 5.1, re-
spectively. These results are satisfactory, since models with RPD values
larger than 5 are considered good for quality control [33].

Finally, a pseudo-univariate calibration curve was obtained
(Fig. 7), demonstrating a simple manner to express this NIRS multi-
variate model. This representation is particularly useful in routine
analysis, where the analyst can visualize the PLS model in a univariate
way. The values of norm of NAS are equivalent to selective signals
obtained from each sample spectrum vector. The fit of this curve is
presented in the following equation:

HCTZ½ � ¼ 3055:4 nâsj jj j þ 2:6943 ð11Þ
Fig. 7. Pseudo-univariate calibration curve. Plot of the NAS norms versus reference
values for the calibration (circles) and validation (asterisks) samples.
4.5. Analysis of real samples

Firstly, the NIRS method was applied to the determination of HCTZ
in powder samples obtained from manufactured tablets of three dif-
ferent production batches. The results were compared with the refer-
ence HPLC method (Table 3). Non paired Student's t tests with four
degrees of freedom showed that there are no significant differences
between the methods for all the three batches, at 95% confidence
level (estimated t values below the critical t value, 2.776).

Although the NIRS model was developed for determining HCTZ in
powder samples, it was also tested on ten intact tablets from a single
batch. These analyses were carried out without replicates and the re-
sults were compared with the HPLC method (Table 4). A paired t test
with 10 degrees of freedom showed that there are no significant dif-
ferences between these results at 95% confidence level (tcalc=2.
094b tcrit=2.228). The individual prediction errors varied between
−6.1 and +8.6%, and a RMSEP of 4.6% was calculated. These results
are worse than those obtained for powder samples, but taking into
account that they were obtained for samples in another physical
form, they were considered reasonable.

Finally, the NIRS method was applied to powder samples obtained
before the compression to tablets. These samples were considered
under control, what means HCTZ contents between 95.0 and 105.0%
(23.75 and 26.25 mg per 150 mg of powder), the limits adopted for
this specific release in the production quality control. This control is
carried out by HPLC, but we did not have access to these results for
comparison purposes. Thus, the developed method was applied to
triplicates of samples collected from six different batches during a pe-
riod of three months. The results were plotted in way similar to a con-
trol chart (Fig. 8) and, as can be observed, all are considered in
agreement with the expected values.

5. Conclusions

This paper developed and validated a diffuse reflectance NIRS
method for direct determination of HCTZ in powder pharmaceutical
formulations. This method has many advantages over the official
HPLC and other alternative methods, such as low cost, simplified pro-
cedure, no need for reagents or solvents and no generation of chem-
ical waste. However, its main advantage is the rapidity of the
analysis. The time interval estimated for the whole chromatographic
Table 4
Determination of HCTZ in ten intact tablets by the proposed NIRS method and the offi-
cial HPLC method.

Tablet Official method (%) Proposed method (%) Prediction errors (%)

#1 95.1 103.6 8.6
#2 98.0 104.2 6.1
#3 99.2 103.5 4.3
#4 100.1 94.0 −6.1
#5 100.3 101.2 0.8
#6 98.2 98.0 −0.1
#7 99.9 105.2 5.3
#8 95.0 97.6 2.6
#9 100.8 103.1 2.3
#10 99.3 102.0 2.7

image of Fig.�6
image of Fig.�7


Fig. 8. Results (mean and standard deviation of triplicates) for the determinations of
HCTZ content in powder formulations collected from six batches before the compres-
sion. The dashed lines indicate the acceptance limits for release.
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analysis of real samples (accounting tablet powdering, solvents ex-
tractions, filtering, chromatographic runs and data treatment) was
88 min, compared with this same estimative for NIRS analysis (ac-
counting tablet powdering, average spectra acquisition, data transfer
and chemometric calculations), which was 6 min. Thus, the NIRS
method was considered 15 times faster than the HPLC one.

The spectral region between 1640 and 1780 nm provided the best
PLS model, corresponding to the first overtone of the stretchings of
C–H bonds of HCTZ. The NIRS method was validated in accordance
with Brazilian and international guidelines [11–13,28] and was con-
sidered accurate, precise, linear and sensitive in the range from 85.0
to 116.0% of the target HCTZ content per tablet (25 mg). This model
was successfully applied to powdered manufactured tablets and to
powder samples collected from the production line before compres-
sion. In addition, it was also extrapolated for determination in intact
tablets, providing prediction errors that were considered reasonable,
despite of their higher values in relation to those obtained for powder
samples. Finally, this paper presented a robust multivariate method-
ology, which employed the concept of NAS, and may be applied in
the development and validation of other analytical methods based
on NIRS and multivariate calibration.

Appendix A. Supplementary material

Supplementary data to this article can be found online at doi:10.
1016/j.microc.2012.03.008.
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